## The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744

Kawamata+15, ApJ, 804, 103



Ryota Kawamata The University of Tokyo

With:

Masafumi Ishigaki, Kazuhiro Shimasaku, Masamune Oguri, Masami Ouchi

# OUTLINE

- Measurements of sizes and magnitudes
- Results
  - Properties of z~6-8 galaxies
  - The redshift evolution of sizes and its implication for disk formation and evolution

#### PREVIOUS SAMPLES OF Z~7 & 8

# Faint galaxies with accurate size measurement from HUDF12



### PREVIOUS SAMPLES OF Z~7 & 8



RK+15

# HUBBLE FRONTIER FIELDS PI: J. Lotz

#### Deep and high-resolution observations by HST + Strong gravitational lensing effects by clusters



#### ABELL 2744 FIELDS

Brighter galaxies from the samples in Ishigaki, RK+2015

**31** galaxies at z~6-7 (i-drop), **8** galaxies at z~8 (Y-drop)



# MASS MODEL CONSTRUCTION

- glafic (Oguri 2010)
- Parametric modeling method
- Mass components
  - Cluster dark halos:
     NFW profiles
  - Member galaxies: elliptical pseudo-Jaffe models
  - External shear
- 24 sets of multiple images



#### SIZE MEASUREMENT

Fit galaxy light profiles with lensed and distorted Sérsic profiles



# OUTLINE

- Measurements of sizes and magnitudes
- Results
  - Properties of z~6-8 galaxies
  - The redshift evolution of sizes and its implication for disk formation and evolution

## SIZE-LUMINOSITY RELATION



- Positive but weak correlation
- Large scatter as expected from the simulated halo spin parameters

#### DEPENDENCE ON COLOR & MULTIPLICITY

0.0 red 1.2 z~6-7 & 8: -0.4  $rac{\Sigma_{
m SFR}}{M_{\odot} {
m yr}^{-1} {
m kpc}^{-2}} = 0.3$ 54 galaxies -0.8 $-1.2 \text{ g} \qquad \mathcal{H} \qquad \mathcal$ 0.8  $r_{
m e}$  / kpc 0.4 -2.8 -3.2 -3.6 blue -4.0 0.0 -20 -19-21 -18-17 $M_{\rm UV}$ RK+15

- Largest galaxies are mostly red and smallest galaxies are mostly blue
- Galaxies with multiple cores  $(\Box, \diamondsuit)$  are bright

# OUTLINE

- Measurements of sizes and magnitudes
- Results
  - Properties of z~6-8 galaxies
  - The redshift evolution of sizes and its implication for disk formation and evolution

# PREVIOUS INTERPRETATION



1. Based on the unconfirmed assumption

2. No absolute value for Mvir discussed

#### ESTIMATING HALO RADII FROM MUV



The size ratio of disk to halo is constant at 3.3% over z~2.5-9.5

#### DISK FORMATION MODEL

$$\frac{r_{\rm e}}{r_{\rm vir}} = \frac{1.678}{\sqrt{2}} \left(\frac{j_{\rm d}}{m_{\rm d}}\lambda\right) f_{\rm c}(c)^{-1/2} f_{\rm R}(j_{\rm d}/m_{\rm d}, m_{\rm d}, \lambda, c)$$
 Mo+1998

 $j_d$ : angular momentum ratio of disk to halo  $m_d$ : mass ratio of disk to halo

- λ: spin parameter of halo
- c: concentration parameter of halo
- λ and c are parameters of the halo
   ← well determined by N-body simulations

(e.g. Bullock+01)

j<sub>d</sub> and m<sub>d</sub> are parameters of the disk
 depend on baryonic physics
 and are not reliably predicted

#### jd/md OF HIGH-Z GALAXIES



The observed size ratio is consistent with  $j_d/m_d = 1$ 

## MEANING OF $j_d/m_d \sim 1$



Specific angular momentum of the disk and halo are the same

Each disk formation model predicts the different angular momentum distribution to the disk and halo

**Constrain the disk formation models** 

# HUBBLE FRONTIER FIELDS PI: J. Lotz

#### Deep and high-resolution observations by HST + Strong gravitational lensing effects by clusters



# TARGETS FOR ALMA FOLLOW UP

- Galaxies found in HFFs, especially strongly lensed ones, are good targets to detect [OIII] & [CII] emission lines and dust continuum with ALMA (see also Infante+2015)
- For those multiply imaged, the redshifts are doubly checked by the photo-z and mass models



z~8.5, μ>40,  $H_{160} \sim 28.2$ 



z~8.4, μ~30,  $H_{160} \sim 25.6$ 



z~7.8, μ~8.8,  $H_{160} \sim 25.5$ 

# GLAFIC TEAM'S MASS MODELS





MACS J0416 Critical curves for a z=8 source Positions of multiple images



# PRECISE MASS MODELS

# Distances between observed and model-predicted image positions

• Our models achieve good accuracy despite a large # of constrains



#### Lens modeling test using simulated clusters

• Our models preformed best in this comparison project



## SUMMARY

- Measured sizes of 31 z~6-7 and 8 z~8 lensed galaxies using our own mass map
- The ratio of half-light radius to virial radius is constant at 3.3%, which is consistent with  $j_d/m_d = 1$
- Positive but weak correlation between  $r_e$  and  $L_{UV}$
- Largest galaxies are red, and smallest galaxies are blue
- Galaxies with multiple cores are bright
- HFF provides with good target galaxies for ALMA follow-up observations
- Our mass models are proved to be accurate and precise