

Low Metallicty Molecular Clouds with ALMA

Mónica Rubio Full Professor Departamento de Astronomía Universidad de Chile

Chile-Japan Patagonia Forum, Puerto Natales, Chile November 10, 2016

STAR FORMATION IN LOW METALLICITY GALAXIES

• Low metallicity galaxies form stars

 Stars form in cold dense clouds of molecular Hydrogen (H₂)

BUT

H₂ gas does not emit in the cold dense cloud

 Need to find other ways to study the regions where star forms

• And determine the amount of $H_2 \rightarrow$ tracers

Determining H₂

CO observations

X=N(H₂))/ICO (mol K kms⁻¹) Xgal= 2 x 10²⁰ cm-2 (K kms⁻¹)⁻¹ ΣH₂ = α_{co} lco (Mo pc⁻²) α_{co} (Gal) = 4

- Virial mass determination, DV and size (R)
- Emission from dust

Determining H₂

These different methods give similar results in the MW and in other spiral galaxies

BUT

Not the case everywhere

!!!low metallicity!!!!!

First Magellanic Cloud CO (1-0) survey Columbia mini 1.2m Telescope@CTIO

LMC

Rubio et al. 1991

Cohen et al. 1988

CO in the Magellanic Clouds

SMC

 $X_{smc} = 2.5 \times 10^{21} \text{ Kkms-1} \sim 10_{gal}$ M(H₂) = 4.6 x 10 ⁶ Mo Mizuno, Rubio et al. 2001

 $X_{LMC} = 7 \times 10^{20} \text{ cm}^{-2} / [\text{K km s}^{-1} \sim 3_{gal}]$

 $M(H_2) = 4-7 \times 10^7 Mo$

Fukui et al.(inc. Rubio,) 2008

PASJ: Publ. Astron. Soc. Japan **51**, 745–749 and Plate 25–27 (1999)

First Results of a CO Survey of the Large Magellanic Cloud with NANTEN; Giant Molecular Clouds as Formation Sites of Populous Clusters

Yasuo FUKUI,¹ Norikazu MIZUNO,¹ Reiko YAMAGUCHI,¹ Akira MIZUNO,¹ Toshikazu ONISHI,¹ Hideo OGAWA,^{1,*} Yoshinori YONEKURA,² Akiko KAWAMURA,^{1,†} Kengo TACHIHARA,¹ Kecheng XIAO,¹ Nobuyuki YAMAGUCHI,¹ Atsushi HARA,¹ Takahiro HAYAKAWA,¹ Shigeo KATO,¹ Rihei ABE,¹ Hiro SAITO,¹ Satoru MANO,¹ Ken'ichi MATSUNAGA,¹ Yoshihiro MINE,¹ Yoshiaki MORIGUCHI,¹ Hiroko AOYA, ...,¹ Shim Ishiro ASAYAMA,¹ Nao YOSHIKAWA,¹ and Jonica RUBIO³

PASJ: Publ. Astron. Soc. Japan 53, L45–L49, 2001 December 25 © 2001. Astronomical Society of Japan.

First Results of a CO Survey of the Small Magellanic Cloud with NANTEN

Norikazu MIZUNO,¹ Mónica RUBIO,² Akira MIZUNO,¹ Reiko YAMAGUCHI,¹ Toshikazu ONISHI,¹ and Yasuo FUKUI¹

© 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. I. CATALOG OF MOLECULAR CLOUDS

Y. FUKUI,¹ A. KAWAMURA,¹ T. MINAMIDANI,^{1,2} Y. MIZUNO,¹ Y. KANAI,¹ N. MIZUNO,¹ T. ONISHI,¹ Y. YONEKURA,³ A. MIZUNO,⁴ H. OGAWA,³ AND M. RUBIO⁵ Received 2006 May 24; accepted 2008 April 2

© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

DENSE CLUMPS IN GIANT MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD: DENSITY AND TEMPERATURE DERIVED FROM $^{13}\mathrm{CO}(J=3-2)$ OBSERVATIONS

TETSUHIRO MINAMIDANI^{1,2}, TAKANORI TANAKA³, YOJI MIZUNO³, NORIKAZU MIZUNO⁴, AKIKO KAWAMURA³, TOSHIKAZU ONISHI⁵, TETSUO HASEGAWA⁴, KEN'ICHI TATEMATSU⁴, TATSUYA TAKEKOSHI², KAZUO SORAI^{1,2}, NAYUTA MORIBE³, KAZUFUMI TORII³, TAKESHI SAKAI⁶, KAZUYUKI MURAOKA⁵, KUNIHIKO TANAKA⁷, HAJIME EZAWA⁴, KOTARO KOHNO⁶, SUNGEUN KIM⁸, Mónica Rubio⁹, and Yasuo Fukul³ 'Erik 'mullek, "Jorge L, fikua, 'Danke fikuhes,' 'Taisiek StatMARY'SMI', 'Utkeh nebby,' 2008a 'Mizuno,' 'Tekik' 'Sungeun Kim, 'I Sungeun Kim, 'I Kawase,' Monica Rubio,'' And Yasuo Fukul¹ Received 2006 November 29; accepted 2007 September 28

日本語?

SMC

Low metallicity system

 $Z_{smc} = 0.2$

and near

 $D_{smc} = 63 \text{ kpc}$

CO Gas in the SMC

Right Ascension (B1950)

$$X_{smc} = 2.5 \times 10^{21} \text{ Kkms-1} \sim 10_{gal}$$

M(H₂) = 4.6 x 10⁶ Mo

Mizuno et al. 2001

 $X_{smc} = 9x \ 10^{20} \text{ Kkms-1} \sim 4_{gal}$

M(H₂) < 3 x 10⁷ Mo Rubio et al. 1993

New APEX CO 2-1 Survey of the Southwest Part of the SMC

PI. M. Rubio

Virial Mass $[M_{\odot}]$

Stunning improvement over previous SEST data

Virial mass – luminosity (X_{CO}) .

If Virialized, X_{co} ~ 5 times Galactic

Rubio et al. In prep

CO the best tracer had not been detected in low metallicity galaxies for many years.

CO emission weak at lower metallicity

Juan Cortés Chile

El team

Bruce Elmegreen NY. USA Deidre Hunter Arizona,US

Phil Cigan New Mexico, USA Celia Verdugo Chile

> Elias Brinks Reino Unido

> > CON

What if we go to lower metallicities ?

first galaxies in the Universe

Figure 4: LITTLE THINGS dwarfs: Red is H1, green is V, blue is FUV. Images are to same relative size.

LITTLE THINGS Survey Hunter et al. 2014

HI survey of dwarfs

Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey)

WLM

Dwarf irregular galaxy at the edge of the Local Group.

 $12 + \log(O/H) = 7.8$

G visual B FUV

Distance : 985 kpc

Stellar Mass \sim 1.6x 10⁷ Mo (1x10¹⁰ Mo MW)

Star formation rate : 0.006 Mo/yr per total stellar mass of 1.6 x 107 Mo ~ 12 time higher than in MW of 1.9 Mo yr-1 and stellar mass of 6.4x10¹⁰ Mo

We detected molecules in the most metal poor galaxy ever !

Breaking the metallicity barrier: $12 + \log(O/H) = 7.8$

Oxygen abundance is 13% solar

Elmegreen, Rubio, et al. 2013, NATURE, 495, 487

LETTER

doi:10.1038/nature11933

Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM

Bruce G. Elmegreen¹, Monica Rubio², Deidre A. Hunter³, Celia Verdugo², Elias Brinks⁴ & Andreas Schruba⁵

Molecular Masses A: $M(H_2)$ = 1.8 (0.8) X10⁵ Mo, Σ = 58 Mo pc⁻² B: $M(H_2)$ = 1.2 (0.6) X10⁵ Mo

WLM

Breaking the metallicity barrier for CO detections! 13% of Solar Oxygen abundance

Elmegreen, Rubio, Hunter, et al. 2013 Nature 495,487 Only at a distance of ~1 Mpc

ALMA C1 CO1-0 observation in WLM

17

We resolve 10 small dense molecular cores in WLM.

CO cores: Virial masses ~ 390 - 1.1x10⁴ M_o Radii ~ 1-6 pc Velocity dispersion < 1 km/s

Rubio et al. 2015

For the first time ever, we see directly the skin and core of a molecular cloud at 13% metallicity.

Rubio et al. 2015

Molecular cloud cores shrink as metallicity decreases

Photodissociation region, [CII]158 µm

Bolatto et al. 1999

Photo-dissociation region is 5x larger than CO cores.

Rubio et al. 2015

Larson's Size-Line width relation

Luminosity and Virial mass

Dwarfs at 10 pc resoltion

WLM clouds follow the average dwarf galaxy relationship between virial mass and luminosity WLM clouds are 10 times lower in Lco for similar mass

Consequence of small mass CO cores

Iow-mass star clusters

Rubio et al. 2015

Conditions for molecular cloud formation

Estimate Σ_{H2} from Σ_{total} (from dust/gas ratio) - Σ_{H1}

CO cores are in pressure equilibrium with weight of overlying HI and H₂.

Milky Way: H₂ requires A_V=0.3 mag \rightarrow 47 M₀/pc² at 13%Z CO requires A_V=1.5 mag \rightarrow 230 M₀/pc² at 13%Z In SE region: HI+H₂ envelope of cores is 58 M₀/pc²; total HI+H₂ is 220 M₀/pc²

WLM's CO cores have normal density, pressure, and column density in spite of being in a low metallicity environment - Similarity in physical properties explain why star clusters born in metal-poor galaxies resemble those seen in less-extreme systems.

- The lack of dust in WLM implies that our best tracer of H_2 , CO, is present only deep in the cloud and the behaviour of most of the H_2 is perhaps not so different from that in other 'normal' galaxies.

- Qualitative agreement with simulations and theoretical predictions for the behaviour of CO and H_2 in metal-poor galaxies. PDR
- The small size of these dust-enshrouded, CO-emitting clumps may explain the relative paucity of highly massive stellar clusters in small, isolated galaxies.

LETTER

Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM

Monica Rubio¹, Bruce G. Elmegreen², Deidre A. Hunter³, Elias Brinks⁴, Juan R. Cortés^{5,6} & Phil Cigan⁷

Rubio, M. Elmegreen, Hunter + 2015 NATURE 525, 218

SMCALMA C2 CO21

PI: Jameson, K

Magellanic Bridge B

24 CO clouds found in Magellanic Bridge B

NGC6822

12+log (O/H) =8.02

D= 474 +- 13 kpc

ALMA CO 2-1 0.9" ~ 2pc

Fig. 2.—(a) H 1 and (b) IRAC images of NGC 6822; (a) shows the total H 1 column density distribution (de Blok & Walter 2000), while (b) shows the underlying stell and warm dust components. The three-color image shows the 3.6 μ m band as blue, the 4.5 μ m band as green, and the 8 μ m band as red; regions of hot dust emissio indicative of active star formation, appear as diffuse regions of red emission. The box in (a) shows the approximate field of view shown in (b).

3

Schruba et al. 2016 Submitted

sizes 1-2 pc line-widths ~ 1km/s low filling factors

CO conversion factor

~ 20 -25 times the galactic value

TAO Telescope: Infrared and Optical Telescope at summit of Chajnantor (5640m)

March 201

Thanks