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HiTS: High cadence Transient 

Survey (F.Förster et al.)

1 HiTS field = 64 CCD arrays ~512 Megapixels per field and epoch

http://www.symmetrymagazine.org/

Dark Energy Camera

(DECAM)

at Cerro Tololo, Chile

512 Mpixels

64 CCDs

Scientific Objective:

Find evidence of Shock

Breakout



HiTS Image Reduction Pipeline

● At this point, candidates are dominated by artifacts 1:10K
● ML to find the needles in the haystack 
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Image Differencing

� Example of template (reference), science (current

image), difference image, SNR difference image

� Image stamps of 21x21 pixels



Traditional Pattern Recognition 

Model

Feature
engineering: 

56 handmade features

Random Forest
classifier



Inspired in Movie “Inception”
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Deep Learning

• Deep Learning is achieving impressive results 
in data science.

• They are based on neural networks, and 
recent breakthroughs are due to:

• Large datasets (e.g. millions of images)

• Faster algorithms and machines

• New way of dealing with overfitting

• Most common type: Convolutional Neural Nets 
(ConvNets)



LeNet5 (1998) 
Y. LeCun et al.

• Architecture designed to process images
(handwritten digits) including invariances to 
traslation, scaling and distortion

• It combines convolutional and subsampling

(pooling) layers

Feature Extraction MLP Classifier



Convolutional Neural Nets 
Applied to HiTS

Transients

vs

Artifacts



Training: Simulated and 
Real Data from HiTS 2013

Data:

• 802,087 non-transients (negatives) + 802,087 simulated transients (positives).

• 1,250,000 for training, 100,000 for validating, 100,000 for testing.

Training:

• Stochastic gradient descent (SGD) with batches of 50 examples.

• Learning rate reduced to half every 50,000 iterations

• Implemented using Theano and took approximately 37 hours to train on a NVIDIA 

TESLA K20 GPU.

Learning Curve



Detection Error Tradeoff (DET)

• Consider 100,000 candidates per night, from which around 10 are real 
transients, and we want to visually inspect 1,000.    FPR~10-2

• By using our ConvNet model we reduce the FNR from ~10-2  to ~3x10-3

RF: random forests

+feature engineering 

approach (56 

handmade features)

ConvNet-1: only the 

difference image.

ConvNet-4: using all 4 

images. 



Detection Error Tradeoff (DET)

• Results for SNR < 7 are shown in blue

• FNR is reduced from ~10-1  to ~3x10-2 

for very faint sources.



Test on 2015 HiTS
Campaign (real data)

• All the difference images with SNe candidates
were analyzed (Total: 628)

Method # Correct

Detections

FNR

RF 439 0.300

ConvNet 487 0.224



Comparison ConvNet vs RF

• At low SNR, ConvNets has a much lower FNR 
than RF
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Conclusions
• The proposed convolutional neural network 

(ConvNet) approach is useful to detect 
transients (supernovae).

• Our approach outperforms a previous 

method based on feature engineering and a 
random forest (RF) classifier, particularly at 

low SNR. 

• Both models seems to be complementary 
and further research is needed.
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