Transient Detection using

Convolutional Neural Networks

Prof. Pablo Estévez, Dr. Eng.
Department of Electrical Engineering, Universidad de Chile
& Millennium Institute of Astrophysics, Chile

Chile-dapan
2016



Contents
o
- High cadence Transient Survey (HITS)
0 Deep Learning: Convolutional Neural Networks
- Results
- Gonclusions



Millennium Institute of Astrophysics (MAS)
Started in J anuar'y 2014

Passmn for the explora’rlon of ‘rhe na’rural world

LT g j




Millennium Institute of Astrophysics (MAS)
Started in January 2014

e

Milky Way Astroinformatics, -Astrostatistics

o

&
P

‘ {8

|

2
. " F

.""_,/ o

o 34 Fa) i, )
A7 ARG

“-~_Exoplanets, Transients + - Supernovae °




HiTS: High cadence Transient
Survey (F.Forster et al.)

Dark Energy Camera
(DECAM)
at Cerro Tololo, Chile
512 Mpixels

Scientific Objective:
Find evidence of Shock 4G -
Breakout
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High cadence Transient Survey (HiTS) High cadence Transient Survey {HiTS)

1 HITS field = 64 CCD arrays ~512 Megapixels per field and epoch



HITS Image Reduction Pipeline

Data Capture ——| Preprocessing —  Alignment

!
PSF Matching —+ Subtraction - candidate
Selection
!
Candidate | Visual
Filtering Inspection
T

e At this point, candidates are dominated by artifacts 1:10K
e ML to find the needles in the haystack




Image Differencing
o

Problem description
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o Example of template (reference), science (current
image), difference image, SNR dlfference image

o Image stamps of 21x21 pixels



Traditional Pattern Recognition
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Random Forest

Class:cores classifier
TRAIN ABLE CLASSIFIER MODULE J
Feature:vector
FEATURE EXTRACTION MODULE ﬂ
Rawtnput Feature
engineering:

56 handmade features



nspired in Movie “Inception”
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Deep Learning

® Deep Learning is achieving impressive results
In data science.

® They are based on neural networks, and
recent breakthroughs are due to:

® Large datasets (e.g. millions of images)
® Faster algorithms and machines
® New way of dealing with overfitting

® Most common type: Convolutional Neural Nets
(ConvNets)



LeNet5 (1998)
Y. LeCun et al.

® Architecture designed to process images
(handwritten digits) including invariances to
traslation, scaling and distortion

® It combines convolutional and subsampling
(pooling) layers

C3: . maps 16@10x10
C1: feature maps S4: f. maps 16@5%5
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Feature Extraction MLP Classifier




Convolutional Neural Nets
Applied to HITS

Transients
2 Artifacts
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Training: Simulated and
Real Data from HITS 2013

Data:
® 802,087 non-transients (negatives) + 802,087 simulated transients (positives).
® 1,250,000 for training, 100,000 for validating, 100,000 for testing.
Training:
Stochastic gradient descent (SGD) with batches of 50 examples.
® Learning rate reduced to half every 50,000 iterations

® Implemented using Theano and took approximately 37 hours to train on a NVIDIA
TESLA K20 GPU.
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Detection Error Tradeoff (DET)

10° , . RF: random forests

+feature engineering

101 L approach (56
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® Consider 100,000 candidates per night, from which around 10 are real
transients, and we want to visually inspect 1,000. FPR~102

® By using our ConvNet model we reduce the FNR from ~102 to ~3x103



Detection Error Tradeoff (DET)
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® Results for SNR < 7 are shown in blue

® FNRis reduced from ~10-1 to ~3x10-2
for very faint sources.



Test on 2015 HITS
Campaign (real data)

® All the difference images with SNe candidates
were analyzed (Total: 628)

# Correct
Detections

RF 439 0.300

ConvNet 487 0.224
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Comparison ConvNet vs RF

® At low SNR, ConvNets has a much lower FNR

than RF
ConvNet

SNe in the 2015 campaign
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Conclusions

® The proposed convolutional neural network
(ConvNet) approach is useful to detect
transients (supernovae).

Our approach outperforms a previous
method based on feature engineering and a
random forest (RF) classifier, particularly at
low SNR.

Both models seems to be complementary
and further research is needed.
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