ライトカーブ遅延法による
高速自転小惑星の熱慣性推定
Thermal Inertia Estimation of Fast Rotating Asteroids
by Light Curve Phase Lag Method

和田空大¹, 酒向重行¹, 小林尚人¹, 紅山仁², 大澤亮³ ¹東京大学, ²コートダジュール天文台, ³国立天文台

> Kiso Schmidt Symposium 2025 May 27th, 2025 上松町ひのきの里総合文化センター

> > ©東京大学木曽観測所

Orbital evolution of asteroids

3. Result

Main Belt

- Asteroids that formed in the main belt and were rich in hydrous minerals delivered water to early Earth. (Peslier+2017)
- The orbital evolution is driven by Yarkovsky effect. (Vokrouhlicky 1998)
 - Force caused by non-uniform thermal radiation
- The surface temperature strongly depends on thermal inertia (熱慣性)

Thermal Inertia (TI) Γ (熱慣性)

- Definition: $\Gamma = \sqrt{k\rho C_p}$ [tiu]
 - k: thermal conductivity [W/m/K]
 - ho: bulk density [kg/m³]
 - *C*_p: specific heat capacity [J/kg/K]
- Significance
 - Determine the temperature distribution in the depth direction.
 - Large TI causes slow cooling and slow warming.

Estimation of TI

- Standard method
 - Based on mid-infrared observations at **multiple solar phase angles**. (e.g. MacLennan&Emery2021)

- TI of tiny asteroids (< 100 m)
 - Estimated for only 4 objects
 - Smaller than expected (Novaković+2024)

5 / 18

Sun

Proposal of a new method to estimate TI

- To estimate TI of tiny asteroids, I focus on Near-Earth Asteroids (NEAs), which are much brighter than Main Belt Asteroids.
- The standard method for TI is difficult to apply to NEAs due to their limited visibility period of only a few days.
- In this study, we developed a new method by **utilizing the dependence** of light curves on rotational phase.

6 / 18

Light curve phase lag method

- Phase lags exist between mid-infrared and visible light curves. (Morrison1976, Harris+2005)
- Phase lags strongly depend on TI.
- We developed a new method to estimate TI by observing phase lags.

sunlight

Kiso Schmidt Symposium 2025

Thermal radiation intensity calculations

- Multiple layer model
- 1-D calculation (vertical)

Representative parameters	T (
Object model	T (
Rotational period P	
Rotational axis	T (
Number of slabs (層数)	
ТΙГ	
Emissivity	T (
	- (

8 / 18

Reflected light intensity calculations

- We developed a simple reflection model.
 - Assuming the Lambertian reflectance

Representative parameters	
Object model	
Rotational period P	
Emissivity	
Solar phase angle α	

4. Discussion

9 / 18

1. Introduction

2. Method

2025/05/27

4. Discussion

Variations in lag-lag diagrams (rotational period P)

2025/05/27

Estimation of TI with lag-lag diagram

3. Result

- The distribution strongly depends on TI.
- The distribution is clearly distinguishable TI.
- Additionally, we can distinguish the rotational direction.

15 / 18

We can estimate TI on this diagram.

Observation strategy

- 1. Detection and orbit determination (α)
 - CSS, Pan-STARRS, ZTF, Tomo-e Gozen, etc.

3. Result

©東京大学木曽観測所

- 2. Derivation of P, a/b
 - Follow-up observation by Tomo-e Gozen
- 3. Derivation of $\Delta \omega$
 - Observe light curves
 - Optical by Tomo-e Gozen
 - MIR with TAO 6.5m
- 4. Estimation of Γ
 - Compare derived and simulated $\Delta \omega$

2025/05/27

Kiso Schmidt Symposium 2025

©東京大学

Expected outcomes

We can estimate **more than six** TI values per year.

- ~ 30: Limitation by equipment
 - Has an observable rotational period (Counted from LCDB Updated Oct. 2023 (Warner et al. (2009)))
 - $P \ge 10$ s: The rotational phase is derivable
 - $P \leq 1000 \text{ s}$: The observation finishes in 30 minutes
- x 1/3: Limitation by observational conditions
 - Enables observation from both Kiso and TAO sites
- x 3/5 (at least): Limitation by rotational axis
 - Has enough amplitude of light curves

Summary

- It is difficult to estimate thermal inertia of tiny asteroids, which are responsible for the origin of water to the Earth, by the standard methods.
- We have developed a new method to enable estimation of thermal inertia of tiny Near-Earth Asteroids.
- Thermal inertia can be estimated utilizing a lag-lag diagram.
- We can realize the method by Tomo-e Gozen and with TAO.

