SN 2024acn: Follow-up observations of a Type II supernova discovered by Tomo-e Gozen

Ryotaro Koshi (The University of Tokyo)

Collaborators: Mitsuru Kokubo, Nozomu Tominaga, Mamoru Doi (NAOJ), Kenta Taguchi (Kyoto University), Shigeyuki Sako, Taiga Sasaoka, Zhuoxi Liang (The University of Tokyo), Ichiro Takahashi (Tokyo Institute of Technology)

> 15th May, 2024 Kiso Schmidt Symposium

0. Contents

• Observation of SN 2024acn (24acn) plays a role as

A case study of Type II(n) supernovae
 An example of follow-up observations for transient objects found by the Tomo-e Gozen project

Table of contents

1. Type II Supernovae

1.1 Type II supernovae (SNe II)1.2 Mass-loss of SN II progenitors

2. Discovery of SN 2024acn

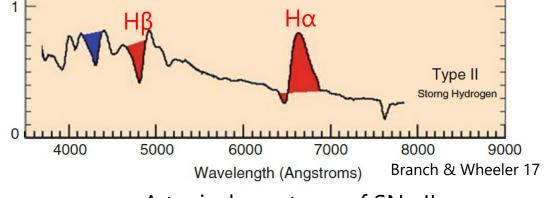
2.1 Discovery of SN 2024acn2.2 Classification of 24acn as a supernova

3. Follow-up observations of SN 2024acn

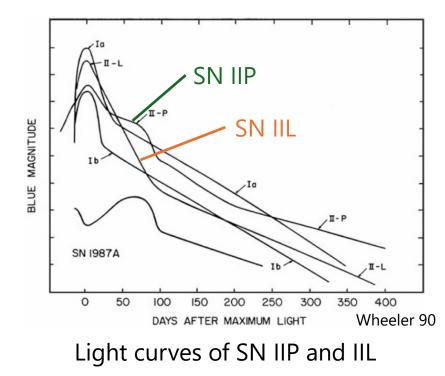
3.1 Follow-up observations of SN 2024acn3.2 Photometry of SN 2024acn3.3 Spectroscopy of SN 2024acn

4. Discussion

4.1 Comparison with other SNe IIn4.2 A multi-component Hα profile4.3 Investigating dust formation

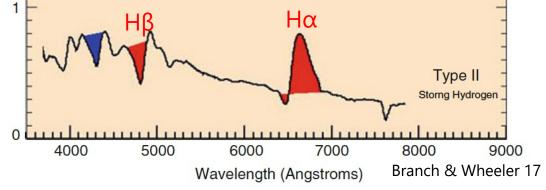

5. Future work and summary

- 5.1 Future observations
- 5.2 Necessity of continued search for early SNe

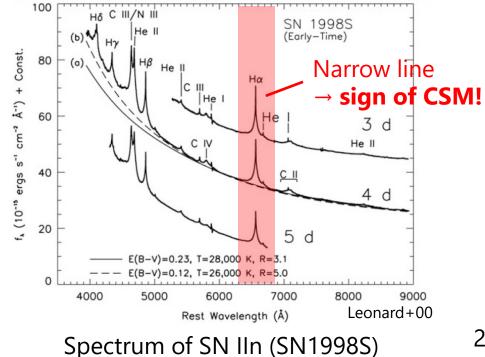

5.3 Summary

1.1 Type II supernovae (SNe II)

- SNe II are supernovae that occur from core-collapse of massive stars (>8M☉)
 - Strong hydrogen lines in spectra (progenitor has a hydrogen envelope)
- SNe II can be further classified from their light curves / spectra
 - SN IIP: "P"lateau phase in light curve
 - SN IIL: "L"inear decline in light curve
 - SN IIn: "n"arrow lines in spectrum
 - ◆ Dense circumstellar material (**CSM**) around the SN → heavy **mass-loss** of progenitor
 - SN IIb: emergence of He I in spectrum

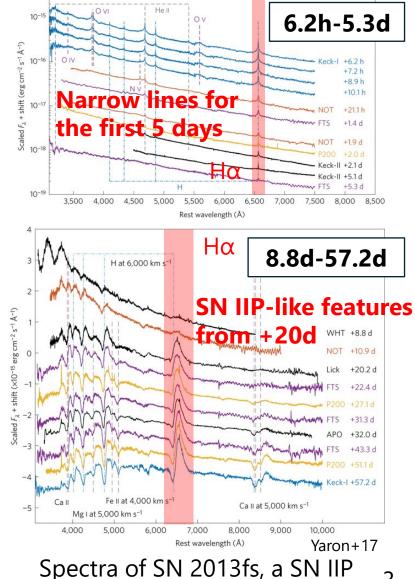


A typical spectrum of SNe II



1.1 Type II supernovae (SNe II)

- **SNe II** are supernovae that occur from core-collapse of massive stars (>8M⊙)
 - Strong hydrogen lines in spectra (progenitor has a hydrogen envelope)
- SNe II can be further classified from their light curves / spectra
 - SN IIP: "P"lateau phase in light curve
 - SN IIL: "L"inear decline in light curve
 - SN IIn: "n"arrow lines in spectrum
 - Dense circumstellar material (CSM) around the SN \rightarrow heavy **mass-loss** of progenitor
 - \succ SN IIb: emergence of He I in spectrum

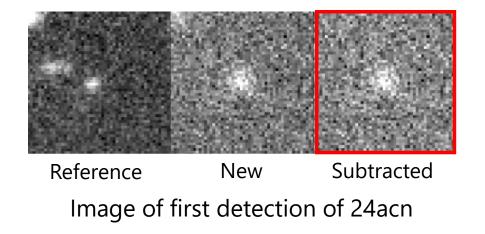


A typical spectrum of SNe II

1.2 Mass-loss of SN II progenitors

- Wide-field surveys have enabled early SN observations, deepening our understandings
- Many SN II progenitors experience intense mass-loss just before explosion (not just SNe IIn)
 - These SNe show narrow lines only for a few days after explosion
 - Implies the existence of CSM near the SN
- There is a **diversity of mass-loss rates** within SNe II
 - We need a larger sample (e.g. SNe in between SNe IIP and SNe IIn) to understand this diversity
 - SNe should be observed as early as possible

SN 2024acn


2.1 Discovery of SN 2024acn

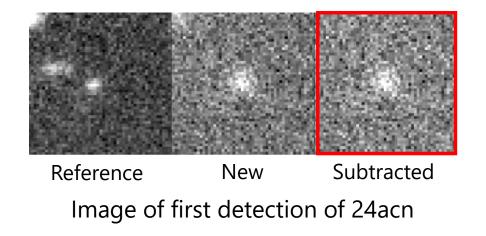
1/13

1/14

1/15

- 24acn was detected at 17.57±0.11 mag (Tomo-e)
 - We received an alert
 - 2nd observation: detection and brightening was confirmed (Tomo-e, MITSuME Akeno)
 - Object was reported to the Transient Name Server (TNS) as AT 2024acn
 - Second object to be reported by Tomo-e Gozen (after SN2019cxx)

Koshi et al., in prep.


2.1 Discovery of SN 2024acn

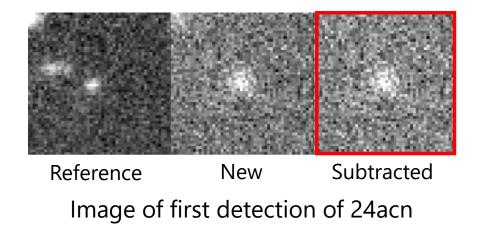
1/13

1/14

1/15

- 24acn was detected at 17.57±0.11 mag (Tomo-e)
 - We received an alert
 - 2nd observation: detection and brightening was confirmed (Tomo-e, MITSuME Akeno)
 - Object was reported to the Transient Name Server (TNS) as AT 2024acn
 - Second object to be reported by Tomo-e Gozen (after SN 2019cxx)

Koshi et al., in prep.


2.1 Discovery of SN 2024acn

1/13

1/14

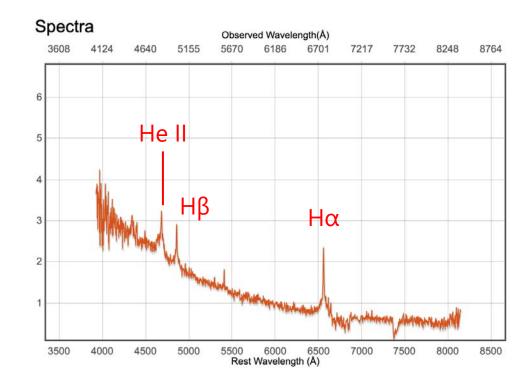
1/15

- 24acn was detected at 17.57±0.11 mag (Tomo-e)
 - We received an alert
 - 2nd observation: detection and brightening was confirmed (Tomo-e, MITSuME Akeno)
 - Object was reported to the Transient Name Server (TNS) as AT 2024acn
 - Second object to be reported by Tomo-e Gozen (after SN 2019cxx)

	cn	1				
RA/DEC (2000) т	уре	Redshift			
		IN II	0.031			
167.668505874 -		ation	Report			
			Report Discovery Date 2024-01-13 19:30:26.000	TNS AT Y	Public Y	Discovery Mag 17.57
Discovery Re	port Classifica Discovering Data So		Discovery Date			Discovery Mag 17.57
Discovery Reporting Group Tomo-e Gozen	port Classifica Discovering Data So		Discovery Date			
Discovery Reporting Group Tomo-e Gozen Filter	port Classifica Discovering Data So		Discovery Date			
Discovery Reporting Group Tomo-e Gozen Filter Other- Reporter/s	Doort Classifica Discovering Data So Tomo-e Gozen	ource	Discovery Date	¥	Ŷ	

Discovery report of 24acn

6

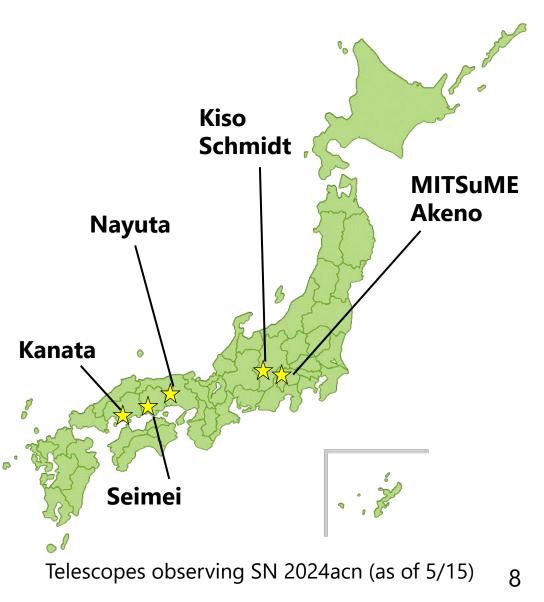

2.2 Classification of 24acn as a supernova

 Spectroscopy and photometry (Seimei, Prop ID: 24A-N-CT17)

1/15

1/17

- 24acn was classified as a
 SN II at z=0.031 (~130Mpc)
 - The existence of the Hα line is a signature of SNe II
- A proposal was submitted to and accepted by OISTER
- Follow-up observations by
 5 observatories started

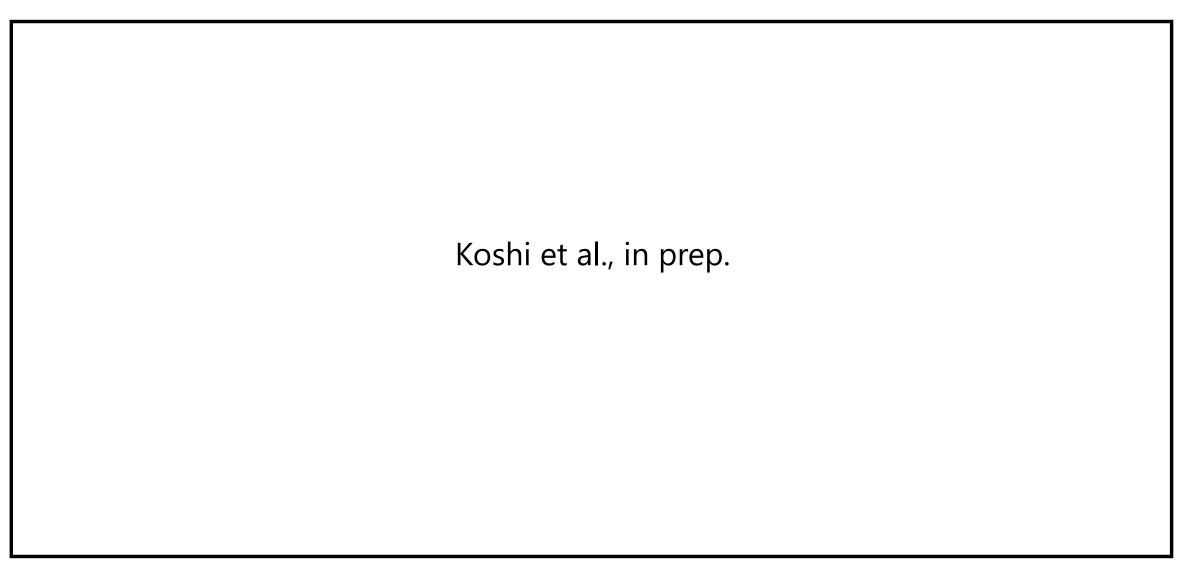

A quicklook spectrum of 24acn taken on 1/15 by Seimei (KOOLS-IFU, VPH-blue)

3.1 Follow-up observations

1/15

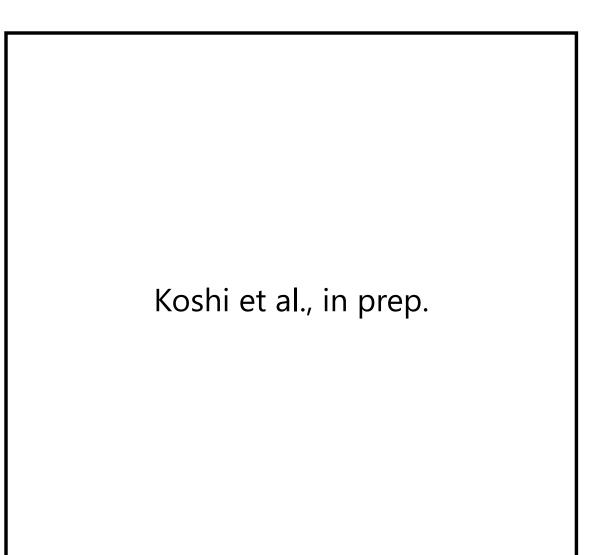
1/17

- Spectroscopy and photometry (Seimei, Prop ID: 24A-N-CT17)
- 24acn was classified as a
 SN II at z=0.031 (~130Mpc)
 - The existence of the Hα line is a signature of SNe II
- A proposal was submitted to and accepted by OISTER
- Follow-up observations by
 5 observatories started

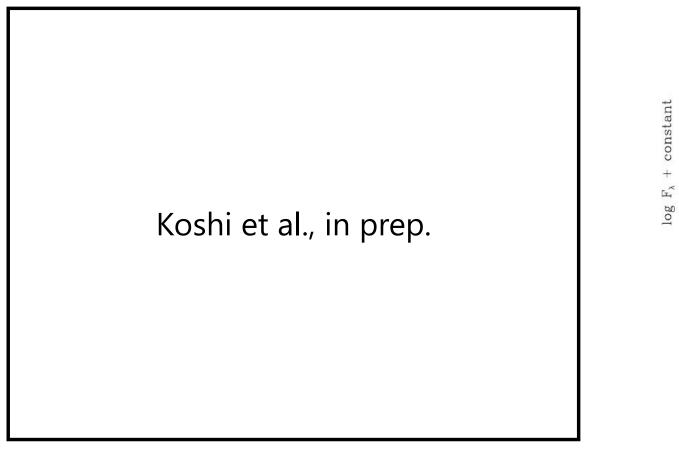


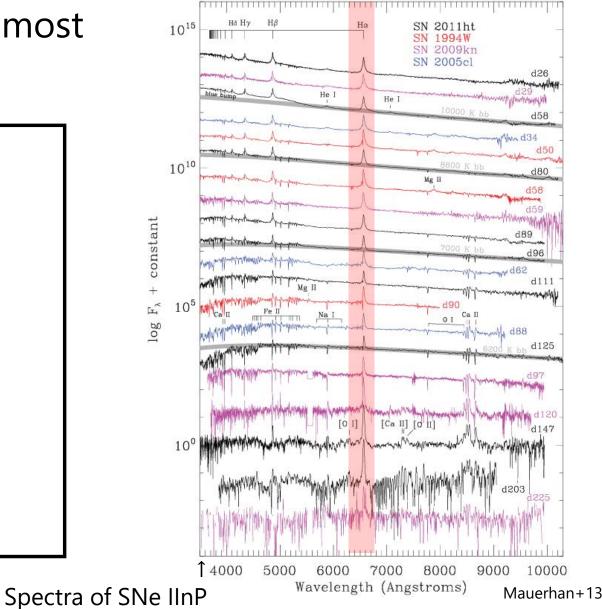
3.2 Photometry of SN 2024acn

- A 10-30 day rise to an absolute magnitude of g'~-19.6 mag
- A slow decline of ~0.02 mag/day from 30d after discovery

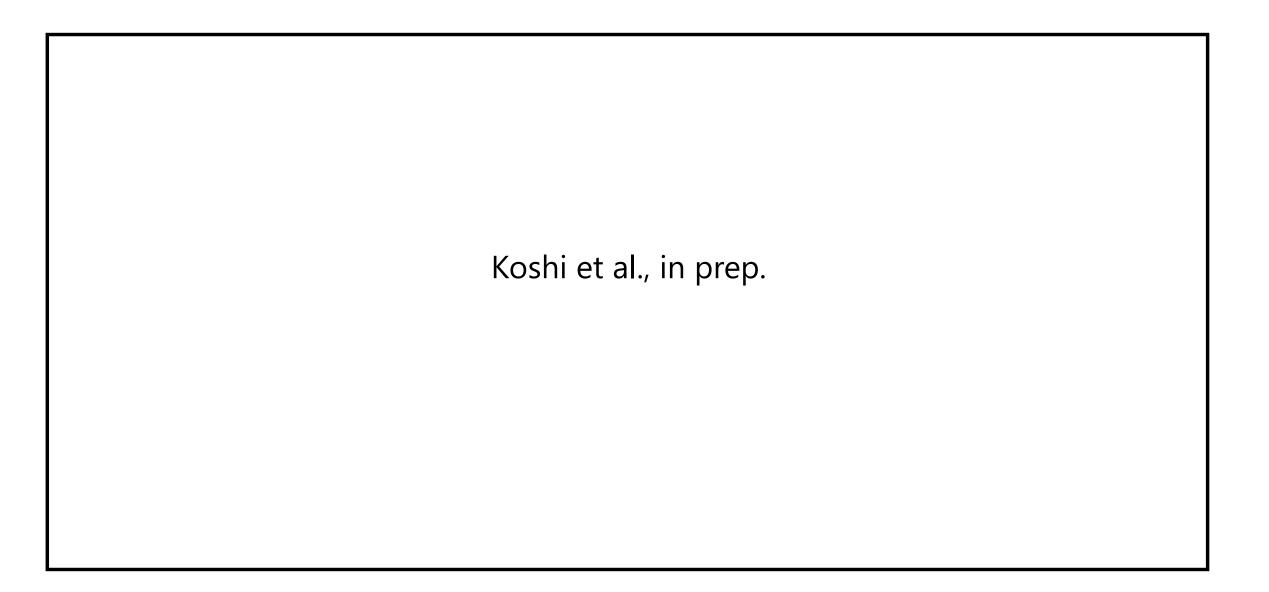

3.3 Spectroscopy of SN 2024acn

4.1 Comparison with other SNe IIn


- Relatively luminous for a SN IIn
- Showing a plateau after peak
 - Subclassified as a "SN IInP"?

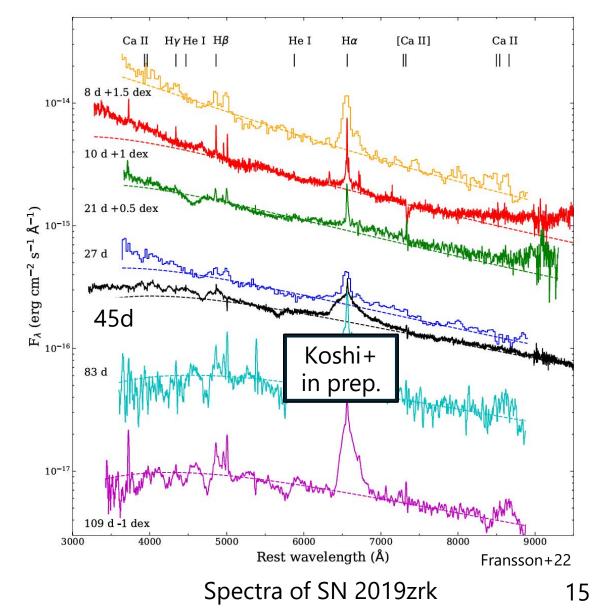

Koshi et al., in prep.

4.1 Comparison with other SNe IIn


 However, the spectra differ from most SNe IInP

12

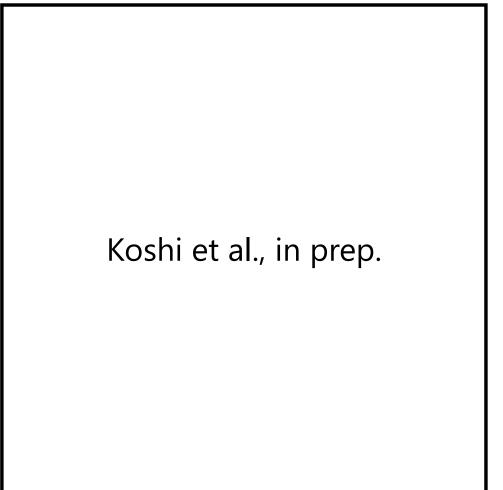
4.2 A multi-component H α profile


4.2 A multi-component H α profile

- Similar H α profiles are seen in a few SNe
 - SN 2019zrk (Fransson+22)
 - KISS15s (Kokubo+19)
- There are mainly two scenarios that can explain the blueshifted broad component
 - Asymmetry of the CSM region
 - Dust formation in the SN
- Existence of dust can be confirmed with NIR observations
- Light curves differ from the two above → peculiar among SNe IIn

4.2 A multi-component H α profile

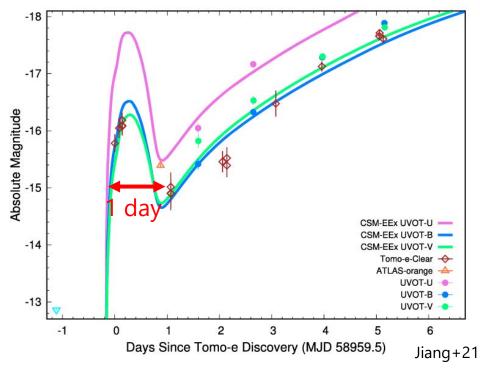
- Similar H α profiles are seen in a few SNe
 - SN 2019zrk (Fransson+22)
 - KISS15s (Kokubo+19)
- There are mainly two scenarios that can explain the blueshifted broad component
 - Asymmetry of the CSM region
 - Dust formation in the SN
- Existence of dust can be confirmed with NIR observations
- Light curves differ from the two above → peculiar among SNe IIn


4.3 Investigation of dust formation

- JHKs-band photometry is being taken with the Kanata telescope (HONIR)
- Hints of dust formation have been found
 - The Ks-band magnitude seem to deviate from the blackbody spectrum
 - There is another energy source in the NIR other than the expanding ejecta (i.e. dust)
- Additional observation is required to confirm and quantify the effect of dust
 - Smaller observation error in the Ks-band
 - Seeing if the SN is brightening or dimming in the NIR

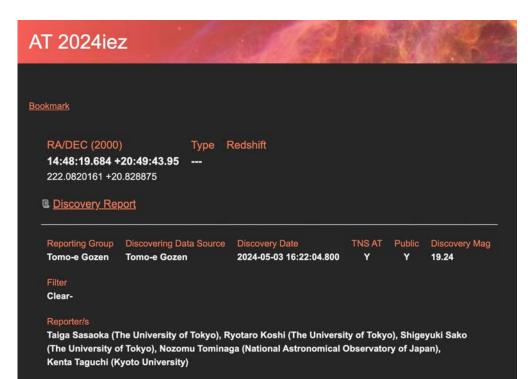
Koshi et al., in prep.

5.1 Future observation plans


- SNe IInP light curves drop rapidly after their plateau (which may be soon!)
 - > We need multiple points on the tail
 - Observe until the end of June (visibility)
- Does 24acn have a more compact
 CSM region than normal SNe IIn?
 - Is the CSM distribution in "between" SNe IIP and SNe IIn?
- 24acn has an unusual spectral evolution for a SN IInP
 > Would the Hα profile change with time?

5.2 Necessity of continued search for early SNe

- Further efforts are expected to help discover more SNe in their early stages
 - Early spectroscopy of SNe II
 - \blacklozenge <10 days after explosion \rightarrow constraints to mass-loss history of progenitor
 - Early flux excess of SNe Ia
 - 2-5 days after explosion \rightarrow constraints to Ni distribution, progenitor system, etc.
- Framework to realize rapid follow-up observations also needs to be established



Early light curve of SN 2020hvf, a SN Ia with an early flux excess

5.3 Summary

- SN 2024acn is a Type II supernova that was found in its early phase by Tomo-e Gozen
- It has a SN IInP-like light curve
 - However, it also shows broad hydrogen lines (that may be seen in SNe IIP)
 - More observation is needed to discuss properties and progenitor candidates
- Observation with several telescopes enables obtainment of good data
- More SNe are expected to be found by Tomo-e
 - Follow-up with various telescopes will maximize the values of these discoveries

Discovery report of AT 2024iez, a possible supernova detected on 5/3 (Sasaoka+24)