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whose  cu rva tu re  is ind ica t ive  of per iods  smal ler  than 7.4 
days .  H o w e v e r ,  wi thout  a deta i led  ana lys i s  of dus t  j e t s ,  
we are not  able  to rule out  any  ro ta t ional  state.  

CONCLUSIONS 

F r o m  our  c o m p r e h e n s i v e  search for ro ta t ional  s tates 
compa t ib l e  with theore t ica l  and obse rva t iona l  con-  
s t ra ints ,  we find that  the long axis o r i en ta t ion  of  the nu-  
c leus  of C ome t  P /Ha l l ey  dur ing  the Vega-1 e n c o u n t e r  
mus t  be r eve r sed  f rom that suggested by the original  in- 
ves t igators .  

We have  p resen ted  obse rva t iona l  ev idence  that 
s t rongly  suggests  that  the ro ta t ional  state of Co me t  
P /Ha l l ey  was  cons t an t ,  at least over  an appar i t ion ,  and 
that  the net  to rque  over  an  appar i t ion  is therefore  negli- 
gible. 

In  order  to satisfy the per iodic i ty  in the l ightcurve as 
well as the repea tab i l i ty  of the morpho logy  of the gaseous  
je ts ,  the nuc leus  mus t  r e tu rn  to app rox ima te ly  the same 
o r i en ta t ion  with respect  to the sun  and  ear th  once  every  
7.4 days .  There fore ,  per iods  (P~, P~) for L A M s  and  SAMs  
must  be app rox ima te  submul t ip les  of  7.4 days .  

Fo r  m o m e n t s  of  iner t ia  cons i s t en t  with the d i m e n s i o n s  
of the nuc l eus  as obse rved  by the spacecraf t ,  the L A M s  
and  S A M s  have  small  n u t a t i o n / n o d d i n g .  There fore ,  mos t  
of  the S A M s  are dynamica l ly  s imilar  to pure  ro ta t ions  
a r o u n d  the short  axis and  have app rox ima te ly  the same 
obse rva t iona l  proper t ies .  As a c o n s e q u e n c e  of this and  
due to the fact that  the phase  is small  dur ing  late-Apri l  
and  May  of  1986, both  pure  ro ta t ions  and mos t  of the 
S A M s  show c o m m o n  axes for the range  of pos i t ion  angles  
of je ts ,  con t r a ry  to the obse rva t ions .  

For  the d y n a m i c a l  axial lengths  r ep resen ta t ive  of the 
nuc l eus  d i scussed  earl ier ,  P+ >~ P J 4  for L A M s  and P ,  ~> 
2P~ for SAMs.  

Al though  SAMs  have  less ro ta t ional  energy  per  unit  of  
ro ta t iona l  angu la r  m o m e n t u m  than  do L A M s ,  n o n e  of  the 
S A M s  is capable  of  expla in ing  all of  the obse rva t iona l  and  
theore t ica l  cons t ra in t s .  

The  clear ly  ~ 'bes t"  so lu t ions  are the L A M s  with (P~ 
3.65 days ,  P+ - 7.3 days)  for c o m b i n a t i o n  (2,1,1) and  with 
(P~ - 3.65 days ,  P+ - 7.3 days)  for c o m b i n a t i o n  (2,1,2). 
The  second  so lu t ion  e n c o m p a s s e s  the model  p roposed  by 
Be l ton  et al. (1991). 

APPENDIX 

An Analysis of Force-Free Asymmetric Rigid 
Body Motion 

In this appendix we derive all the equations used in the main body of 
the paper to describe the rotational motion of an asymmetric rigid body 
subjected to no torques. The equations are perfectly general, although 

Z 

1 

Y 
b 

X 
FIG. A1. The X YZ coordinate system in the external reference frame 

of a coorbiting observer is centered at the center of mass of the body, 
and its orientation is fixed in inertial space. The body-frame coordinate 
system lis is fixed to the body with l, i, and s denoting the principal axes 
of the inertia ellipsoid. These axes approximately align with the long, 
intermediate, and short axes, respectively, of the body provided the 
body is not extremely irregular or inhomogeneous. The total rotational 
angular momentum vector, M (fixed in the external frame when no 
external forces are present), is aligned with the Z axis. The angular 
velocity vector, IL varies in a complex way, in both the external refer- 
ence frame and the body frame, with the component along the Z axis, 
llz > 0. The Euler angles 0, cb, and qJ describe the motion of the body 
with respect to the external observer. 

we describe the motion in words that are most appropriate to a prolate 
body having one long axis and two significantly shorter axes. The equa- 
tions place emphasis on the motion of the rigid body with respect to an 
external coorbiting observer. 

Define an XYZ coordinate system (Fig. AI) in the external reference 
frame (the frame of an external coorbiting observer) such that the origin 
of the XYZ coordinate system is at the origin of the body-frame coordi- 
nate system (fixed to the body) and with the Z axis coinciding with the 
total rotational angular momentum vector, M. The body-frame coordi- 
nate system is defined by the principal moments of inertia. Let I be the 
axis of minimum moment, taken to be aligned approximately along the 
longest dimension of the body. Let s be the axis of maximum moment 
of inertia in a plane normal to the l axis, aligned approximately with 
the shortest dimension of the body. The other axis of the body-frame 
coordinate system, i. is defined by I × i = s and is in a plane normal to 
the I axis and aligned with an intermediate dimension of the body. Since 
there are no torques acting on the system, the rate of change of M in the 
external reference frame is given by 

The rate of change of M, (dM/dt)body, in the body-frame is given by 

��:�3 θ, φ, ψ�6%�-(�I0
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(Left) (Center) (Right)

Figure 5. Shape model of 2012 TC4. An observer located on the direction of intermediate axis in the left figure. The vertical
center axis on these images corresponds to the direction of φ̇. The θ is formed by the direction of φ̇ and the direction of ψ̇.
(Left) A view on phase 0 in Figure 4. (Center) A view on phase ∼ 0.1 in Figure 4. (Right) A view on phase ∼ 0.5 in Figure 4.

Figure 6. Motion of 2012 TC4 in model 4.
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Figure 7. The Euler angle of ✓, �, and  as a function of time for a model 4. This figure style is developed by Samarasinha &
A’Hearn (1991). The angle ✓ is the angle between the long axis and total rotational angular momentum vector M . The angle
� and  measures the amount of precession executed by the long axis around M and amount of rotation around the long axis
itself. For model 4, the axial lengths of 3.3 ⇥ 8.0 ⇥ 14.3 m were used with M

2
/2E = (2Il + Ii)/3. The nutation period, P✓, is

exactly half the rotational period, P . The variation in the angular velocity,  ̇, is undetectable in plots of  vs time because

the amplitude of variation is negligible. The angle � is described based on the constant of �̇ ⇠ 29.4 deg·min
�1.



)0,.0EB;�A9
-m?7�6a-

1pK>p6a-�*8Ng�i:T7����

@�G>�t��&+/D��6a&
+/D��C$#"�45&+/D�
OU 

��<8&+/D�Ec�MpnV6
a �

��	)���)����)

�=oI2=%e3

MpK>p6a-�*

MpnV6a-�*

��	)���)����)



��
�)�(��)





|tB2=l8<;P

AASTEX Observations of a near-Earth Object 2012 TC4 9

nine tumbling and fast-rotating asteroids would be ejected objects by the impact event rather than the impacted
parent objects. Michikami et al. (2010) pointed out that the axial ratio of the intermediate axis to the long axis of
fast-rotating asteroids (diameter < 200 m and rotational period < 1 h) is similar to that of ejecta in laboratory impact
experiments and that of boulders on Itokawa and Eros. For example, Li/Ll, the mean value of axial ratios of boulders
larger than 5 m on Itokawa is 0.61 ± 0.19. Since the lightcurve amplitudes of nine tumbling asteroids are larger than
1.0 mag, the shape of nine tumbling asteroids presumably indicates elongated boulder-like shapes. In particular, the
axial ratio Li/Ll of 2012 TC4 is 0.54 in model 3 and 0.56 in model 4, and the axial ratio Li/Ll of 2008 TC3 is 0.54.
The NEOs, 2012 TC4 and 2008 TC3, will be objects similar to the boulders on Itokawa. Furthermore, we discuss how
the impact event happened to fast-rotating asteroids using the axis ratio, Ls/Ll. The collisional destruction process
is divided into impact cratering (low impact energy) and catastrophic disruption (high impact energy). Laboratory
impact experiments demonstrated that Ls/Ll of impact cratering fragments is ⇠0.2, Ls/Ll of catastrophic disruption
fragments is ⇠0.5, and Ls/Ll decreases with decreasing impact energy (Michikami et al. 2016). Numerous impact
fragments were generated by the laboratory impact experiments. Despite of the catastrophic disruption, a part of the
impact fragments will indicate low Ls/Ll. Thus, the collisional destruction process cannot be immediately concluded
from the Ls/Ll of asteroids. Nonetheless, the axial ratio Ls/Ll of 2012 TC4 is 0.42 in model 3 and 0.23 in model 4,
and the axial ratio Ls/Ll of 2008 TC3 is 0.36. The NEO 2012 TC4 could be generated by catastrophic disruption in
model 3, and by impact cratering in model 4. The NEO 2008 TC3 could have experienced the impact energy between
models 3 and 4.
As we discussed above, 2012 TC4 had possibly experienced an impact event. Here, we estimate the excitation and

damping timescales of 2012 TC4. The excitation timescale, especially, helps to deduce the time of the impact event of
2012 TC4. An nutation angle (✓ in the Appendix) of asteroids with the LAM increases with dissipating the internal
energy. Then, the motion of the asteroid transitions to the SAM via an unstable and temporary rotation mode around
the intermediate axis. After the transition to the SAM, the nutation angle decreases with the time, and the SAM
transitions to the pure rotation around the short axis, which is in alignment with the principal axis of moment of
inertia. We call the transition time from the LAM to the SAM “excitation timescale”, and the transition time from
the SAM to the pure rotation “damping timescale”. The excitation and damping timescale (Sharma et al. 2005, Breiter
et al. 2012) are expressed as

Ts = Ds(h1, h2)
µQ

a2⇢!̃3
s

, (16)

where Ds(h1, h2) is a shape parameter; µ is the elastic modulus; Q is the quality factor; ⇢ is the density; a is the half of
the long axis length; and !̃s is a representative angular velocity around the focusing principal axis. The quantities for
the LAM have the subscript s = 1, and those for the SAM have the subscript s = 3. The shape parameter Ds(h1, h2)
for the LAM and SAM are defined as
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where ✓
0
s
and ✓

0

s
are the initial and the final maximum wobbling angle, respectively, h1 ⌘ Li/Ll, h2 ⌘ Ls/Li,  1 and

 3 are dimensionless factor of the energy loss rate (Breiter et al. 2012). According to the manner of Pravec et al.
2014, !̃1 and !̃3 are represented as
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where Is, Ii, and Il are the moment of inertias defined in the Appendix. When we use !̃obs ⌘ 2⇡/P� as a proxy for
!̃2 and a ⌘ Dm/2h1, where Dm is the asteroid mean diameter, the final formulae for the excitation and damping
timescales become

T1 = D1(h1, h2)
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timescales become

T1 = D1(h1, h2)
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nine tumbling and fast-rotating asteroids would be ejected objects by the impact event rather than the impacted
parent objects. Michikami et al. (2010) pointed out that the axial ratio of the intermediate axis to the long axis of
fast-rotating asteroids (diameter < 200 m and rotational period < 1 h) is similar to that of ejecta in laboratory impact
experiments and that of boulders on Itokawa and Eros. For example, Li/Ll, the mean value of axial ratios of boulders
larger than 5 m on Itokawa is 0.61 ± 0.19. Since the lightcurve amplitudes of nine tumbling asteroids are larger than
1.0 mag, the shape of nine tumbling asteroids presumably indicates elongated boulder-like shapes. In particular, the
axial ratio Li/Ll of 2012 TC4 is 0.54 in model 3 and 0.56 in model 4, and the axial ratio Li/Ll of 2008 TC3 is 0.54.
The NEOs, 2012 TC4 and 2008 TC3, will be objects similar to the boulders on Itokawa. Furthermore, we discuss how
the impact event happened to fast-rotating asteroids using the axis ratio, Ls/Ll. The collisional destruction process
is divided into impact cratering (low impact energy) and catastrophic disruption (high impact energy). Laboratory
impact experiments demonstrated that Ls/Ll of impact cratering fragments is ⇠0.2, Ls/Ll of catastrophic disruption
fragments is ⇠0.5, and Ls/Ll decreases with decreasing impact energy (Michikami et al. 2016). Numerous impact
fragments were generated by the laboratory impact experiments. Despite of the catastrophic disruption, a part of the
impact fragments will indicate low Ls/Ll. Thus, the collisional destruction process cannot be immediately concluded
from the Ls/Ll of asteroids. Nonetheless, the axial ratio Ls/Ll of 2012 TC4 is 0.42 in model 3 and 0.23 in model 4,
and the axial ratio Ls/Ll of 2008 TC3 is 0.36. The NEO 2012 TC4 could be generated by catastrophic disruption in
model 3, and by impact cratering in model 4. The NEO 2008 TC3 could have experienced the impact energy between
models 3 and 4.
As we discussed above, 2012 TC4 had possibly experienced an impact event. Here, we estimate the excitation and

damping timescales of 2012 TC4. The excitation timescale, especially, helps to deduce the time of the impact event of
2012 TC4. An nutation angle (✓ in the Appendix) of asteroids with the LAM increases with dissipating the internal
energy. Then, the motion of the asteroid transitions to the SAM via an unstable and temporary rotation mode around
the intermediate axis. After the transition to the SAM, the nutation angle decreases with the time, and the SAM
transitions to the pure rotation around the short axis, which is in alignment with the principal axis of moment of
inertia. We call the transition time from the LAM to the SAM “excitation timescale”, and the transition time from
the SAM to the pure rotation “damping timescale”. The excitation and damping timescale (Sharma et al. 2005, Breiter
et al. 2012) are expressed as

Ts = Ds(h1, h2)
µQ

a2⇢!̃3
s

, (16)

where Ds(h1, h2) is a shape parameter; µ is the elastic modulus; Q is the quality factor; ⇢ is the density; a is the half of
the long axis length; and !̃s is a representative angular velocity around the focusing principal axis. The quantities for
the LAM have the subscript s = 1, and those for the SAM have the subscript s = 3. The shape parameter Ds(h1, h2)
for the LAM and SAM are defined as

D1(h1, h2) =


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1h
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and
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2
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sin✓3cos✓3

 3
d✓3, (18)

where ✓
0
s
and ✓

0

s
are the initial and the final maximum wobbling angle, respectively, h1 ⌘ Li/Ll, h2 ⌘ Ls/Li,  1 and

 3 are dimensionless factor of the energy loss rate (Breiter et al. 2012). According to the manner of Pravec et al.
2014, !̃1 and !̃3 are represented as

!̃1 =
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and
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2
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2
1

!̃2, (20)

where Is, Ii, and Il are the moment of inertias defined in the Appendix. When we use !̃obs ⌘ 2⇡/P� as a proxy for
!̃2 and a ⌘ Dm/2h1, where Dm is the asteroid mean diameter, the final formulae for the excitation and damping
timescales become

T1 = D1(h1, h2)
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, (21)
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(Sharma et al. 2014, Breiter et al. 2012, Pravec et al. 2014)
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(Breiter et al. 2012)
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of 10−6 for ks = 0.999. However, for the values of ks close to 1, it
is better to use

ζ ′
s = 1 −

√
ks

2
(
1 +

√
ks

) , (74)

on the right-hand side of (72) instead of ζ , and obtaining the com-
plementary nome q′

s , which may serve to compute qs through the
relation

ln qs ln q′
s = π2. (75)

An additional benefit of the nome is also a quickly convergent series
for the elliptic integral

Ks = π

2

(
1 + 2

∞∑

p=1

qp2

s

)2

. (76)

The mean values required in equation (49) follow directly from
the presented Fourier series. For example, in the SAM
〈[

ω2
1

]2
2p

〉
= ω̃4

1

(
A − a3

a1 − a3

)2 〈(
X2p cos 2pψ3

)2
〉

= ω̃4
1

2

(
A − a3

a1 − a3

)2

X2
2p, (77)

〈[
ω2

1

]2
2p−1

〉
= 0, (78)

and in the LAM
〈[

ω2
1

]2
2p

〉
= ω̃4

1

2

(
A − a3

a1 − a3

)2

k4
1X

2
2p,

〈[
ω2

1

]2
2p−1

〉
= 0,

(79)
with X2p depending on q3 and q1, respectively. Note that some of
the mean values can be negative, like
〈[

ω2
1

]
2p

[
ω2

2

]
2p

〉
= − ω̃2

1ω̃
2
2

2
(A − a3)2

(a1 − a3) (a2 − a3)
X2

2p, (80)

in the SAM. However, their associated αij are also negative, so there
is no subtraction in equation (49).

4.3 Final expressions

Performing the necessary substitutions in equation (48), we find an
expression for the energy loss rate

Ės = −a4ρ mω̃5
s

µ Q
&s(ks, h1, h2, ν) (81)

with dimensionless

&3 = Z5
3 (P1(k3)M13 + P2(k3)M23 + P3(k3)M0 + P4(k3)M12) ,

(82)

&1 = Z5
1 (P1(k1)M13 + P2(k1)M12 + P3(k1)M0 + P4(k1)M23)

(83)

(note the swapped M23 and M12), where

Zs = (s

ω̃s

= πns

2asKs

. (84)

First, we recall that the leading factor depends on the semi-major
axis of ellipsoid a, its mass m, density ρ, the fifth power of the
nominal rotation rate ω̃s (resulting from the division of angular mo-
mentum H by the related moment of inertia), Lamé shear modulus
µ and quality factor Q. Functions Pi(ks) depend on the ratio of ki-
netic energy and angular momentum through an elliptic modulus ks

that enters Jacobi’s nome qs and have the form of infinite sums

P1(ks) =
∞∑

p=1

(2p − 1)3q2p−1
s(

1 − q2p−1
s

)2 , (85)

P2(ks) =
∞∑

p=1

(2p − 1)3q2p−1
s(

1 + q2p−1
s

)2 , (86)

P3(ks) =
∞∑

p=1

(2p)3q2p
s(

1 − q2p
s

)2 , (87)

P4(ks) =
∞∑

p=1

(2p)3q2p
s(

1 + q2p
s

)2 , (88)

although in practice only a few leading terms should be sufficient.
Finally, Mij and M0 are dimensionless, positive coefficients depend-
ing only on the shape (through h1, h2) and on Poisson’s ratio ν. In
terms of the coefficients from equation (49), they are

Mij =
16 a2

i a
2
j βij

d12d13d23dij

, (89)

M0 = 16
d12d13d23

(
a4

1d23α11

d12d13
+ a4

2d13α22

d12d23
+ a4

3d12α33

d13d23

−a2
1a

2
2α12

d12
+ a2

1a
2
3α13

d13
− a2

2a
2
3α23

d23

)
. (90)

where dij = (ai − aj). Appendix B contains the full expressions of
Mij and M0. For the reasons explained in the next section, we give
them with the fixed Poisson’s ratio ν = 0.25.

4.4 Poisson’s ratio

All recent models of spin-axis relaxation assume Poisson’s ratio
ν = 0.25, i.e. equal Lamé constants λ = µ. The authors justify it by
the fact that this is approximately a typical value for most of cold
solids (Efroimsky 2000). Earlier, Prendergast (1958) considered
an incompressible object with ν = 0.5. Only Molina et al. (2003)
maintain the explicit dependence on ν in their final formulae for a
spheroid.

The present model also maintains ν in the final expressions, so
we are in a favorable situation to estimate the sensitivity of Ės on its
value. Interestingly, in contrast to the results of Molina et al. (2003),
the dependence of Mij and M0 on Poisson’s occurs to be very weak.
As a function of 0 ≤ ν ≤ 0.5, the values of M coefficients vary on the
level of at most 10−2 (relatively), whereas the solution of Molina
et al. (2003) exhibits the dependence on the level of 10−1. This
property came unexpected, because αij still contained a factor (1 −
ν2)−1 that later vanished in M0. In these circumstances, we fix the
value of ν = 0.25 as a physically realistic one, which considerably
simplifies expressions, but the results will fairly well apply to an
incompressible case with ν = 0.5.

5 WOBBLE DA MPING TIME

Let us define a ‘wobbling angle’ θ s as the maximum angle between
the angular momentum vector H and a relevant axis (Oz in the SAM
or Ox in the LAM) attained during the wobbling cycle of a rigid
body, namely

θs = max
(

arccos
∣∣∣∣

H · es

H

∣∣∣∣

)
. (91)
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For the remaining 15 matrix elements that are not given above, we
have (repeated index marks a pattern, no summation implied)

Aii
jk = Ajk, Aii

jj = Ajj , A
ij
kk = 0. (A24)

The off-diagonal ‘central stress’ elements are given directly by
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The rest is obtained from equations (35) with
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APPENDIX B: COEFFI CI ENTS M

After setting Poisson’s ratio ν = 1
4 and defining

N = 32
35
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where h12 = h1h2, we obtain a compact form of three coefficients
required in equations (82) and (83):
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The expression of the fourth one is more involved:

M0 = N

3h4
2N9

8∑

j=1

Nj h
2j
2 .

(B5)

Using an auxiliary variable

ξ =
(
h1 + h−1

1

)2
, (B6)

we can compress Nj to read

N0 = 225 (ξ − 1) , (B7)

N1 = 6
(
1 + h2

1

)
(29ξ − 21) , (B8)

N2 = h2
1

(
31ξ 2 + 82ξ − 62

)
, (B9)
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where h12 = h1h2, we obtain a compact form of three coefficients
required in equations (82) and (83):
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The expression of the fourth one is more involved:
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3h4
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j=1
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2 .

(B5)

Using an auxiliary variable

ξ =
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1

)2
, (B6)

we can compress Nj to read

N0 = 225 (ξ − 1) , (B7)

N1 = 6
(
1 + h2

1
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(29ξ − 21) , (B8)

N2 = h2
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)
, (B9)
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of 10−6 for ks = 0.999. However, for the values of ks close to 1, it
is better to use

ζ ′
s = 1 −

√
ks

2
(
1 +

√
ks

) , (74)

on the right-hand side of (72) instead of ζ , and obtaining the com-
plementary nome q′

s , which may serve to compute qs through the
relation

ln qs ln q′
s = π2. (75)

An additional benefit of the nome is also a quickly convergent series
for the elliptic integral

Ks = π

2

(
1 + 2

∞∑

p=1

qp2

s

)2

. (76)

The mean values required in equation (49) follow directly from
the presented Fourier series. For example, in the SAM
〈[

ω2
1

]2
2p

〉
= ω̃4

1

(
A − a3

a1 − a3

)2 〈(
X2p cos 2pψ3

)2
〉

= ω̃4
1

2

(
A − a3

a1 − a3

)2

X2
2p, (77)

〈[
ω2

1

]2
2p−1

〉
= 0, (78)

and in the LAM
〈[

ω2
1

]2
2p

〉
= ω̃4

1

2

(
A − a3

a1 − a3

)2

k4
1X

2
2p,

〈[
ω2

1

]2
2p−1

〉
= 0,

(79)
with X2p depending on q3 and q1, respectively. Note that some of
the mean values can be negative, like
〈[

ω2
1

]
2p

[
ω2

2

]
2p

〉
= − ω̃2

1ω̃
2
2

2
(A − a3)2

(a1 − a3) (a2 − a3)
X2

2p, (80)

in the SAM. However, their associated αij are also negative, so there
is no subtraction in equation (49).

4.3 Final expressions

Performing the necessary substitutions in equation (48), we find an
expression for the energy loss rate

Ės = −a4ρ mω̃5
s

µ Q
&s(ks, h1, h2, ν) (81)

with dimensionless

&3 = Z5
3 (P1(k3)M13 + P2(k3)M23 + P3(k3)M0 + P4(k3)M12) ,

(82)

&1 = Z5
1 (P1(k1)M13 + P2(k1)M12 + P3(k1)M0 + P4(k1)M23)

(83)

(note the swapped M23 and M12), where

Zs = (s

ω̃s

= πns

2asKs

. (84)

First, we recall that the leading factor depends on the semi-major
axis of ellipsoid a, its mass m, density ρ, the fifth power of the
nominal rotation rate ω̃s (resulting from the division of angular mo-
mentum H by the related moment of inertia), Lamé shear modulus
µ and quality factor Q. Functions Pi(ks) depend on the ratio of ki-
netic energy and angular momentum through an elliptic modulus ks

that enters Jacobi’s nome qs and have the form of infinite sums

P1(ks) =
∞∑

p=1

(2p − 1)3q2p−1
s(

1 − q2p−1
s

)2 , (85)

P2(ks) =
∞∑

p=1

(2p − 1)3q2p−1
s(

1 + q2p−1
s

)2 , (86)

P3(ks) =
∞∑

p=1

(2p)3q2p
s(

1 − q2p
s

)2 , (87)

P4(ks) =
∞∑

p=1

(2p)3q2p
s(

1 + q2p
s

)2 , (88)

although in practice only a few leading terms should be sufficient.
Finally, Mij and M0 are dimensionless, positive coefficients depend-
ing only on the shape (through h1, h2) and on Poisson’s ratio ν. In
terms of the coefficients from equation (49), they are

Mij =
16 a2

i a
2
j βij

d12d13d23dij

, (89)

M0 = 16
d12d13d23

(
a4

1d23α11

d12d13
+ a4

2d13α22

d12d23
+ a4

3d12α33

d13d23

−a2
1a

2
2α12

d12
+ a2

1a
2
3α13

d13
− a2

2a
2
3α23

d23

)
. (90)

where dij = (ai − aj). Appendix B contains the full expressions of
Mij and M0. For the reasons explained in the next section, we give
them with the fixed Poisson’s ratio ν = 0.25.

4.4 Poisson’s ratio

All recent models of spin-axis relaxation assume Poisson’s ratio
ν = 0.25, i.e. equal Lamé constants λ = µ. The authors justify it by
the fact that this is approximately a typical value for most of cold
solids (Efroimsky 2000). Earlier, Prendergast (1958) considered
an incompressible object with ν = 0.5. Only Molina et al. (2003)
maintain the explicit dependence on ν in their final formulae for a
spheroid.

The present model also maintains ν in the final expressions, so
we are in a favorable situation to estimate the sensitivity of Ės on its
value. Interestingly, in contrast to the results of Molina et al. (2003),
the dependence of Mij and M0 on Poisson’s occurs to be very weak.
As a function of 0 ≤ ν ≤ 0.5, the values of M coefficients vary on the
level of at most 10−2 (relatively), whereas the solution of Molina
et al. (2003) exhibits the dependence on the level of 10−1. This
property came unexpected, because αij still contained a factor (1 −
ν2)−1 that later vanished in M0. In these circumstances, we fix the
value of ν = 0.25 as a physically realistic one, which considerably
simplifies expressions, but the results will fairly well apply to an
incompressible case with ν = 0.5.

5 WOBBLE DA MPING TIME

Let us define a ‘wobbling angle’ θ s as the maximum angle between
the angular momentum vector H and a relevant axis (Oz in the SAM
or Ox in the LAM) attained during the wobbling cycle of a rigid
body, namely

θs = max
(

arccos
∣∣∣∣

H · es

H

∣∣∣∣

)
. (91)
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where dij = (ai − aj). Appendix B contains the full expressions of
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ν = 0.25, i.e. equal Lamé constants λ = µ. The authors justify it by
the fact that this is approximately a typical value for most of cold
solids (Efroimsky 2000). Earlier, Prendergast (1958) considered
an incompressible object with ν = 0.5. Only Molina et al. (2003)
maintain the explicit dependence on ν in their final formulae for a
spheroid.

The present model also maintains ν in the final expressions, so
we are in a favorable situation to estimate the sensitivity of Ės on its
value. Interestingly, in contrast to the results of Molina et al. (2003),
the dependence of Mij and M0 on Poisson’s occurs to be very weak.
As a function of 0 ≤ ν ≤ 0.5, the values of M coefficients vary on the
level of at most 10−2 (relatively), whereas the solution of Molina
et al. (2003) exhibits the dependence on the level of 10−1. This
property came unexpected, because αij still contained a factor (1 −
ν2)−1 that later vanished in M0. In these circumstances, we fix the
value of ν = 0.25 as a physically realistic one, which considerably
simplifies expressions, but the results will fairly well apply to an
incompressible case with ν = 0.5.

5 WOBBLE DA MPING TIME

Let us define a ‘wobbling angle’ θ s as the maximum angle between
the angular momentum vector H and a relevant axis (Oz in the SAM
or Ox in the LAM) attained during the wobbling cycle of a rigid
body, namely

θs = max
(

arccos
∣∣∣∣

H · es

H

∣∣∣∣

)
. (91)
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For the remaining 15 matrix elements that are not given above, we
have (repeated index marks a pattern, no summation implied)

Aii
jk = Ajk, Aii

jj = Ajj , A
ij
kk = 0. (A24)

The off-diagonal ‘central stress’ elements are given directly by

A12 =
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2h2
12h

2
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3 + h2

2 + h2
12

)
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⎠ h2
1B12

2
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2
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The rest is obtained from equations (35) with
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APPEND I X B: COEFF I CI ENTS M

After setting Poisson’s ratio ν = 1
4 and defining

N = 32
35

(
h2

12(
1 − h2

1

) (
1 − h2

2

) (
1 − h2

12

)
)2

, (B1)

where h12 = h1h2, we obtain a compact form of three coefficients
required in equations (82) and (83):

M13 = N
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) (
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2
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The expression of the fourth one is more involved:

M0 = N

3h4
2N9

8∑

j=1

Nj h
2j
2 .

(B5)

Using an auxiliary variable

ξ =
(
h1 + h−1

1

)2
, (B6)

we can compress Nj to read

N0 = 225 (ξ − 1) , (B7)

N1 = 6
(
1 + h2

1

)
(29ξ − 21) , (B8)

N2 = h2
1

(
31ξ 2 + 82ξ − 62

)
, (B9)
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corresponding to particle sizes larger than 1 mm rising to ,1 cm near
the crossed filaments. The narrowing of the tail (Fig. 2) occurs because
particles launched perpendicularly to the orbit reach maximum height
above the orbit plane one quarter-orbit (10 months) after ejection. The
width of the dust tail implies out-of-plane dust velocities dv < 0.2 m s21.
Relative velocities measured between the nucleus N and sub-nuclei in the
filaments (for example, between N and C in Fig. 1) are dv , 0.2 m s21.

The effective scattering cross-section of the dust tail is comparable to
the area of a circle of radius re 5 2,100 m. If contributed by particles in the
millimetre to centimetre size range, this cross-section corresponds to a
dustmassM 5 (6–60)3 107 kg, equivalent to asphere of the same density
and having a radius r 5 17–36 m (see Supplementary Information).

One possibility is that P/2010 A2 was disrupted by rotational burst-
ing, perhaps caused by spin-up under the action of radiation torques (the
timescale for spin-up is very uncertain but it can be less than a hundred
thousand years for a sub-kilometre body12,13). If the dust following
P/2010 A2 was produced by an impact, r gives an upper limit to the
radius of the projectile, rp, because, in a hypervelocity impact, orders-of-
magnitude more mass is ejected from the target than is delivered by the
projectile. We infer that the projectile was of the order of a few metres in
radius, tiny compared to the primary nucleus. The velocity dispersion
among asteroids in the main belt is DV < 5 km s21 (ref. 1). From these
parameters we infer that the energy per unit target mass in the impact
responsible was E/M 5 K(rp/rn)3DV2 < (103–104) J kg21, where rn is
the radius of the nucleus. This range encompasses the E/M needed for
catastrophic fragmentation in a direct impact14. Hypervelocity impact
experiments15 and calculations16 show that most mass is displaced at low
velocities, consistent with the speeds measured.

The expected interval between collisional disruptions of 0.1-km-
diameter asteroids in the main belt is about one year17, whereas
damaging but non-disruptive impacts should be more frequent.
Because the duration of visibility of the P/2010 A2 debris cloud exceeds

one year, we should expect to find one or more similar objects at any
time, in any all-sky survey with sensitivity equal to that of LINEAR or
greater. Comparable disruption events occurring annually will release
about 2 to 20 kg s21 of dust into the zodiacal cloud, on average. This is
only 0.1% to 1% of the 600–1,000 kg s21 mass injection rate needed to
keep the zodiacal cloud in steady state18, suggesting that most of the
mass comes from comets19 or another source.

Received 10 May; accepted 25 August 2010.
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among colliding asteroids. Icarus 107, 255–268 (1994).

 276

 278

 280

 282

 284

 286

 288

 290

 292

 294

 296

20 Jan 9 Feb 1 Mar 21 Mar 10 Apr 30 Apr 20 May 9 Jun

P
os

iti
on

 a
ng

le
 fr

om
 N

or
th

 t
hr

ou
gh

 E
as

t 
(d

eg
re

es
)

Observation time (month and day of 2010)

P2010/A2 orbit
21 May 2009
1 May 2009
4 Apr 2009

22 Mar 2009
2 Mar 2009

10 Feb 2009
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Figure 3 | Position angle of the tail as a function of time showing changes
caused by the viewing geometry. Measured position angles of the tail (black
symbols) are shown with error bars denoting one standard deviation. Calculated
position angles of different synchrones (colour-coded curves) are shown as
functions of the epoch of observation. The position angle of the projected orbit is
shown as a dashed grey line. To measure the difference between the position angles
of the tail and of the projected orbit, we rotated the images so as to align the x axis
with the projected orbit. At constant intervals, we obtained profiles perpendicular
to the orbit by averaging over 200 pixels parallel and 10 pixels perpendicular to the
orbit. To each profile we fitted a Gaussian function. We then fitted a linear
function to the peak of the Gaussian versus the distance from the nucleus. The
slope and root-mean-square of the slope give us the position angle of the tail and
the corresponding error bars. The coloured curves indicate the position angles of
specific synchrones, that is, dust emitted at a specific date in 2009 (see synchrone
labels) with zero relative velocity. Simulations demonstrate that dust emitted at a
given time with zero speed is seen in projection along a straight line starting from
the nucleus and with the distance to the nucleus proportional to the radiation
pressure coefficient b with larger particles (with smaller b) closer to the nucleus for
a given release time. For a given observation date, the position angle of the
synchrones is a unique function of the time of emission. The coloured lines show
the change of the synchrone position angles with time, primarily owing to the
changing viewing geometry. In particular, all synchrones were projected to the
south of the orbit before the Earth crossed the orbital plane of the comet on 9
February 2010, and to the north afterwards. The measured position angles of the
tail are best matched by the 2 March 2009 synchrone and are inconsistent with
synchrones more than a few weeks before or after that date.

.

.

.

.

.

.

Figure 2 | Hubble Space Telescope images of P/2010 A2 at the eight
indicated epochs. Images in each panel have been rotated so that the tail lies
approximately horizontally. The images, from Wide Field Camera 3 on the
Hubble Space Telescope, have 0.04-arcsecond pixels and are combinations of
images with total integration times of about 2,600 s through the F606W filter.
Each panel subtends 10 arcseconds in height. Numerous cosmic rays and
trailed background objects have been removed from the data. Residual streaks
in some panels (such as the diagonal streaks on 25 and 29 January 2010) are due
to the incomplete removal of trailed background stars and galaxies.
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