Scheduling High-Cadence Telescope Observations

An optimization approach

Jo3o Pedro Pedroso

INESCTEC and Faculty of Sciences, University of Porto

Joint work with:

»> Shiro lkeda, ISM
> Tomoki Morokuma, The University of Tokyo
> Shigeyuki Sako, The University of Tokyo

Kiso Symposium, Kiso, July 2019

The problem

Situation (my understanding):

» Telescope used for detecting supernovae right after explosions

» rapid increase in observed flux, requiring multiple observations
during a night

» Strategy:
> take successive images of a given zone
» check for differences between them

> In this context:
» try to observe the whole visible celestial sphere
> repeat some time later
» there must be a minimum delay between successive images

> aim: maximize the number of observations made
> in other words, minimize the time lost

> telescope movements
> waiting time

Background: optimization tools

Background: optimization tools

Consider the following situation:
» 7 positions to observe in the sky

» Each position

» has an expected reward
> requires a certain time to be photographed

» A telescope is available for a limited time

Example

» Data: Position: 1 2 3
Reward: 7 2 4
Time: 12 8 11

» Total available time: 30

» How can we solve the problem?

1l = O

NN O

[Ca ROV N|

Example

\4

Data: Position: 1 2 3 4
Reward: 7 2 4 9
Time: 12 8 11 1

Total available time: 30

(=]

cl1 = Ol
NN O
1w~

v

» How can we solve the problem?

\{

Mathematical formulation: knapsack problem

» Variables: x1,xo,x3, x4, x5, X6, X7
» x; =1 if we photograph position i, 0 otherwise
> binary variables, constrained to values 0 or 1

» Objective:
> maximize 7x1 +2xp +4x3 +9x4 + x5 + 2xg + 3x7

» Constraint:
> subject to 12x7 +8xp +11x3 + 19x4 + 5x5 + 2x5 + 5x7 < 30

Mathematical formulation

Knapsack problem: more concisely:

maximize Z VjX;
J

subject to Y wjxj s W
J
xj € 10,1}

vj

How to solve it — with Gurobi and Python

Simply describe the problem, and send it to a general purpose solver

from gurobipy import =*
m = Model()
x = {}

for i in range(1,8):

x[i]l = m.addVar(vtype="B")
m.addConstr (12xx[1] + 8*x[2] + 11*x[3] + 19#x[4] + 5xx[5] + 2*x[6] + 5*x[7] <=
m.setObjective(7*x[1] + 2+x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7], GRB.
m.optimize()
for i in range(1,8):

print(x[i].X)

© o N G e W N

—
o

How to solve it — with Gurobi and Python

© o N G e W N

—
o

© @ NG R W N

Simply describe the problem, and send it to a general purpose solver

from gurobipy import =*
m = Model()
x = {}
for i in range(1,8):
x[i]l = m.addVar(vtype="B")
m.addConstr(12+x[1] + 8%x[2] + 11%x[3] + 19%x[4] + 5*x[5] + 2*x[6] + 5xx[7] <=
m.setObjective(7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7], GRB.
m.optimize()
for i in range(1,8):
print(x[i].X)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0000%
.0

H R, OOR OR
ocooooo

How to solve it — with a modeling language

Simply describe the problem in a modeling language, and send it to
a general purpose solver

ampl: var x {1..7} binary;
ampl: maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7];
ampl: subject to Capacity:

12¢x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5xx[5] + 2*x[6] + 5*xx[7] <= 30;
ampl: solve;

[I N T N

How to solve it — with a modeling language

Simply describe the problem in a modeling language, and send it to
a general purpose solver

[I N T N

© @ NG A W N

N
B oW N o= o

ampl:
ampl:
ampl:

ampl:

var x {1..7} binary;

maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2xx[6] + 3*x[7];
subject to Capacity:

12%x[1] + 8*x[2] + 11%x[3] + 19%x[4] + 5xx[5] + 2*x[6] + 5*x[7] <= 30;
solve;

Academic license - for non-commercial use only
Gurobi 8.0.1: optimal solution; objective 16

2 simplex iterations

1 branch-and-cut nodes

ampl: display x;

x [*]

1

N oo WwN

1

= = O O O

How to solve it?

General-purpose optimization solvers:

» No need to know what methods are used for solving
» Very powerful:
» most of the underlying optimizatin problems are NP-hard

> in the worst case, take exponential time in terms of the size of
the problem

» but in practice, even very large problems can be solved
> often, thousands or millions of variables and/or constraints
» Convenient way to get a proven optimum
» even open source solvers involve years of development

The problem

The problem

» There is a set of positions to be observed in the sky
» Each of them can be observed on a given configuration of the
telescope
» We want to
» minimize unproductive time
» maximize the number of positions observed 3 times during the
night
» Difficulty: sky "moves" during the night

» setup between two telescope positions is time-dependent

Background

Background

Figure

60 ‘
40 A

201

—20

—40

270°

—60 ‘

0 50 100 150 200 250 300 350

An optimization model

An optimization model

maximize

subject to

> 2

keK
ZX,‘tS]. for t:O,...,T
iel
XI.,I’—].:ZWUI' ViEI,t:].,...,T
jel
th: Z Wijyt*Cij VjEI,t:].,...,T
iel:t—c;>0
Yko=0 VkeK
yktSZa,-ktx;t VkeK,t=1,...,T
iel
min(T,t+dx)
Y vk z2dk(Yke—Yke-1) YkeK,t=1,...,T
t'=t
T
Zi = Zykt Vke K
t=1

(all variables are binary)

Data

v

K — set of positions to be observed in the sky

v

| — set of positions in the telescope

» T — number or periods to consider (time discretization)
> a;; — connect telescope and sky's positions:

» aj+ =1 if at period t telescope in position i € | observes sky's
position ke K
> 2 =0 otherwise

> cjj — time necessary to move the telescope from position i to j

» di — time necessary to make observation at sky's position k

Variables

» Main decision variables:
» x;; = 1 if telescope is on position i at period t
» xj; =0 otherwise
» Telescope movement:
» wijr =1 if at period t telescope moves from position i to
position j (possibly, j =)
» Observed: (determined in terms of x)
» yie =1 if sky's position k is observed at period t, 0 otherwise
» Positions observed: (determined in terms of y)

» z, =1 if sky's position k has been observed

Constraints (#1)

xj+ =1 if telescope is on position i at period t
wijp =1 if at period t telescope moves from position i to position j

Yie =1 if sky’s position k is observed at period t, 0 otherwise

vy vy VvYyYy

2 =1 if sky’s position k has been observed

At each period, telescope is (at most) in one position

Zx,-tsl fort=0,..., T

iel

Constraints (#2)

xjr = 1 if telescope is on position i at period t
wijr =1 if at period t telescope moves from position i to position j

Yie =1 if sky's position k is observed at period t, 0 otherwise

vV vy VYYy

2 =1 if sky’s position k has been observed

If the telescope was in position i at t—1, then at t it must move to
some (possibly the same) position

X,"t_]_:ZW,'jt Viel,t:]_,...,T
jel

> if xjt—1 =1, then one of the w;;; must be non-zero

Constraints (#3)

xj+ =1 if telescope is on position i at period t
wijs =1 if at period t telescope moves from position i to position j

Ykt =1 if sky's position k is observed at period t, 0 otherwise

vy v VvYYy

z) =1 if sky’s position k has been observed
For being in position j at period t, the telescope must have been in

a position i (possibly the same) early enough to move to j

Xjt = Z WU.t—CU VjEI,t:].,...,T

iE/:t—C,'j>0

Constraints (#4)

xj¢ =1 if telescope is on position i at period t
wijp =1 if at period t telescope moves from position i to position j

Yie =1 if sky's position k is observed at period t, 0 otherwise

vy vy VvYyYy

z =1 if sky’s position k has been observed

No observations can be made at t =0

Yko=0 Vke K

Constraints (#5)

xjt =1 if telescope is on position i at period t
wijr =1 if at period t telescope moves from position i to position j
Ykt =1 if sky's position k is observed at period t, 0 otherwise

z) =1 if sky’s position k has been observed

Yy VY VY

ajke — 1 if at period t telescope in position i € | observes sky's position k€ K
Observing sky's position k at period t is only possible if the

telescope is in a position from which k can be observed

yktSZa,-ktx,-t VkeK,t=1,...,T

iel

Constraints (#6)

xj+ =1 if telescope is on position i at period t
wije =1 if at period t telescope moves from position i to position j
Ykt =1 if sky's position k is observed at period t, 0 otherwise

z) =1 if sky's position k has been observed

vV vy VY VvYYy

dj — time necessary to make observation at sky's position k

If an observation at point k has started in period t, then the same
position must be observed at least d) successive periods

min(T,t+dx)
yktrzdk(ykt—yk,t_l) VkeK,t=1,...,T

t'=t
» observing point k starts in period t iff y, ;-1 =0 and y,; =1
» in that case, the right-hand side is positive

» otherwise, the constraint becomes redundant

Constraints (#7)

xjt =1 if telescope is on position i at period t
wijp =1 if at period t telescope moves from position i to position j

Yie =1 if sky's position k is observed at period t, 0 otherwise

vy vy VvYyYy

2 =1 if sky’s position k has been observed

A position is counted in the objective only if it was observed at
some valid period

M~

Zy < Ykt Vke K

t=1

Objective

xj+ =1 if telescope is on position i at period t
wijp =1 if at period t telescope moves from position i to position j

Yie =1 if sky’s position k is observed at period t, 0 otherwise

vy vy VvYyYy

2 =1 if sky’s position k has been observed

Objective: maximize the number of positions observed:

maximize Z Z)
keK

Refinements: second-time observations

» What happens if all the positions can be observed?

» We should take into account second-time observations
> also third-time, fourth-time, ...

» Additional variables:

> y,’(t =1 if position k is observed for the second time at some
period t
> ¥, =0 otherwise

Refinements: second-time observations

» A minimum number of periods (A) must elapse since the first
observation

> In other words: y, . must be zero for A periods after period t
at which yy; changed from 1 to 0

» Additional constraints (Vke K,t=1,...,T):

yll(t <1—(Vk,t-1—Y«t)
}/;/(,Hl <1—(Yke-1~Ykt)

yl’<,t+A <1—(Yk,t-1—Ykt)

> A new variable z, is needed for counting the number of

second-time observations (as with zy)

» Extension for three-times observations: zl’(’

Objective: maximize the number of three-times observations

maximize) z,
keK

Issues

» The previous model is good, but. ..

» |s it acceptable in practice?

Issues

v

The previous model is good, but. ..

\4

Is it acceptable in practice?

v

For a typical instance:

» sky positions: >300 — ~ 100000 arc variables
» time discretization:
> each image: ~ 48 seconds
> each movement: from a few seconds to ~ 1 minute

v

If we discretize to 1 second: > 4000 million variables. . .

Practical approach # 1

Practical approach # 1

For dealing with the practical problem:
» Motivation: as we cannot afford much detail on future data,
concentrate on the next movement
» Very simple idea: use a nearest-neighbor approach
» Well known heuristic method for the traveling salesman
problem (TSP)

Nearest-neighbor

Nearest-neighbor

Nearest-neighbor

Nearest-neighbor: improvement

» Consider only neighbors visited at most N +2 times, where N
is the minimum number of visits

L)

current”
‘humber

/ofvisits'

Algorithm: nearest-neighbor

Solution contruction procedure:

» select (arbitrarily) a visible point
> repeat:
» move to closest "visitable" point
> visible and with minimum delay from previous observation
» advance simulation time: movement + exposure durations

» update set of "visitable" points
» determine distance from current point to all visitable

Algorithm: nearest-neighbor

Solution contruction procedure:

» select (arbitrarily) a visible point

> repeat:
» move to closest "visitable" point
> visible and with minimum delay from previous observation

» advance simulation time: movement + exposure durations
» update set of "visitable" points
» determine distance from current point to all visitable

These solution constructions can be iterated:
» choose all different starting points
» for each of them, construct a solution starting from thene
» generates many solutions

» at the end, choose the best of them

Initial part of the solution

90°
_— § \\
135° / - 45°
P £
/ <
/) .
/ AT P \\50
/ : >
/ / \30 \
[/ - / i \\2 0 \
| [[/ > 10 \ \ \
[[] / \ \
180°| ; ‘ } { 3 | | | o
‘ [[\ \) | | T |
\ | \ / |
\ T .
“‘ \ \ / /
o\ AN
\ \ N /’ //
\\\ //
N
225° N ' 315°
\

Full solution

,///"

A\

Q\

/

90°

4"’/’/{
l§§“‘ // "i;«
MI\\ t v)@

\"I'\”gﬂ’ A ‘,

\» i\ \

4/
‘ H I\
M;. L)
{v’ﬂ %4 L w’

270°

“‘
v' %
4\\\’A 5

Practical approach # 2

Practical approach # 2

» Nearest-neighbor is blind

» considers only the next step
» Can we improve it?

» rolling-horizon

Practical approach # 2

Rolling-horizon

\4

Consider current position of the telescope

» Determine the N closest observable point

v

Schedule them optimally
» approximate dynamics of the movement between two celestial
positions
» consider present movement times
» use optimization model for the TSP

v

Commit only to the next point to visit

Rolling-horizon

Analysis

12

Histogram for the total number of observations

[Nearest neighbor
" Rolling horizon

DA

Histogram for the number of 3-times observations

[Nearest neighbor
0 Rolling horizon
16 A

DA

Histogram: # n-th observations (best solution)

nearest neighbor rolling horizon

u]
o)
1
n
it

DA

Comparison:

» Rolling-horizon heuristic:
» makes a better usage of the time
> allows more observations overall
» Nearest-neighbor heuristic:

> less consistent
» greater variability on solutions constructed
> allows more 3-times observations

» If distance independent of observation time:

» nearest-neighbor constructs hundreds of solutions in just a few
seconds
» good for reacting in real-time

Further issues

» Real time data:
» weather conditions: clouds may obstruct observation
» use whole sky image analysis to select observable points

Further issues

» Real time data:
» weather conditions: clouds may obstruct observation
» use whole sky image analysis to select observable points

Further issues

» Force some observations, e.g.
» observe area around gravitational wave
» follow an asteroid

Further issues

» Force some observations, e.g.
» observe area around gravitational wave
» follow an asteroid

Further issues

» Force some observations, e.g.
» observe area around gravitational wave
» follow an asteroid

Further issues

» "Expected image interest":
» can we somehow estimate how much new information a new
image will bring about?
» objective: maximize "total interest" of images collected
» advantage for a mathematical model here

In summary

v

First attempt to model/solve telescope scheduling

v

Ongoing work, no definitive results yet
Methods:

1. Telescope scheduling as a mathematical optimization problem
2. Heuristic methods:

v

> nearest-neighbor
> rolling horizon, based on a model for the traveling salesman
problem

v

Future work:

» online version (image processing)
» extend to different objectives

» deal with real-time constraints

» exact method?

» reinforcement learning?

	The problem
	An optimization model
	Practical approach # 1
	Practical approach # 2
	Analysis
	In summary

