

30-micron observations of circumstellar dust around Luminous Blue Variables

Tomohiko Nakamura

Department of Astronomy, The University of Tokyo

Dust formation on Massive Stars

Dust at high-z galaxies
 z~6 (age: ~1Gyr); 10⁸-10⁹M_{sun} dust
 Massive stars will be primary dust suppliers

SN2006ic

- When do massive stars form dust?
 Prior to the SN explosion
 In the SN ejecta
- SN2006jc
 7x10⁻⁵M_{sun}@800K+3x10⁻³M_{sun}@320K
 Pre-existing dust is dominant

dust formation on massive mass-losing stars is important but little known

(Sakon et al. 2009)

Massive stars' life

Varying with changes in initial masses
 mass-losing phase duration: ~10⁴-10⁵year

Luminous Blue Variables

- The LBV phase is considered to be a primary mass loss phase of very massive stars.
 - observed (H-poor) WR stars have the mass of no more than 25M_{sun}

- Continuum-driven wind (Owocki et al. 2003)
 - □ Mass-loss rate : ~10⁻³ Msun/yr
 - Exceeding "Eddington-limit"
 - Independent of stellar metalicity

Luminous Blue Variables

- Evolved, massive stars (initial mass: >30M_{sun})
- Luminous (~10⁶ L_{sun}) and high mass-loss rate (~10⁻³M_{sun}/yr)
- Very rare: 12 LBVs and 23 LBV candidates in our Galaxy (Clark+, 2003)

LBV variability

- Giant eruption
 - □ Variation of > 2 mag
 - Observed two times in the Galaxy (η Carinae, P Cygni)
- Eruption: variation of 1-2 mag
 - □ Timescale: ~10-40 years
- The origin of variation is still unknown
 instability of stars, binary system, etc...

Dust formation in LBVs

- Many LBVs are associated with circumstellar dust
- The estimated amount of dust mass: ~0.01--0.1M_{sun}
 - Much larger than the other types of massive stars (WR, RSG, etc...)

Star	$\log (L/L_{\odot})$	R _{neb} (pc)	M_{dust} (M_{\odot})	$M_{\rm gas}$ (M_{\odot})
$\eta \operatorname{Car}^{a,b}$	6.7	0.1	0.15	3-15
AG Car ^c	6.25	0.36→0.80	0.22	8.9
HR Card,e,f	5.7	0.26	$< 8 \times 10^{-4}$	0.8-2.1
Hen 3-5199	5.7	1.14	0.007	2.0
Wra 751 ^c	5.7	0.17→0.34	0.017	1.7
HD 1686251,h,i	5.6	0.21×0.24	0.016	2.1
P Cyg ^{j,k}	5.8	0.4	0	0.01
AFGL 2298 ^{l,m}	6.2	0.12→0.72	0.1	10
R 127 ^{j,n}	6.1	1.05×0.8	-	10 ± 2
S 119 ^{j,n}	6.0	1.0×0.9	-	2.6 ± 0.7
R 71°	5.85	0.12→0.18	0.02	2
Pistol Star ^{p,q}	6.6	1.5	0.004	11
$G25.5+0.2^{2,r,s,t}$	>5.9	0.4×0.6	>0.06	5.4
S 61 ^{j,u}	6.1	0.7×0.65	-	14 ± 3
G79.49+0.26 ^{v,w}	5.5	0.8→3.6	0.15	15
Wra 17-96 ^x	6.26	0.7→2.2	0.1	10
G24.73+0.69	5.6	0.7→1.7	0.0045	0.45
G26.47+0.02	6.0	1.4→2.4	0.019	1.9

(Clark+, 2003)

Dust formation in LBVs

- Typical LBV spectrum has a peak around 30µm
 - Cool dust (~100K) emission
- High-resolution >30µm imaging is important to investigate the cool dust components

miniTAO/MAX38 observations

- The top of Co. Chajnantor (5640m)
- Atmospheric windows at 30µm band are available
 - miniTAO/MAX38 has a unique capability for 30µm observations from the ground!

Object	λ (μm)	T _{exp} (sec)	reference star	
η Carinae	18.7	50		
	31.6	50	VY CMa	
	37.3	50	8 8 8	
AFGL 2298	18.7	40	IRC +10420	
	31.6	1000		
	18.7	500	V1185 Sco	
108022	31.6	3500		

η Carinae

- The most intensely observed LBV
- Remarkable circumstellar nebula called the "Homunculus" Nebula
- Giant eruption in 1843
 Gormed the Homunculus Nebula
- Binary interaction
 - □ LBV+O binary (5.54years)
 - periodic dust formation occurred

η Carinae

- The Homunculus Nebula is considered to be consists of ~100K, 0.1~0.15M_{sun} dust, but the distribution of the cool dust components is poorly understood
 - Morris+99: in the equatorial torus
 - □ Smith+03: in the polar lobes

30-micron observations can reveal the cold dust distribution of η Carinae

30-micron imaging

- Obtained the diffraction-limited images at each band
- Resolved the Homunculus Nebula at 31.7um for the first time

spatial profiles of Homunculus Nebula

- comparing spatial profiles between two directions
- extended structure along both of the directions
 - However, most of the infrared source is concentrated in the central core

Deconvolution

- Obtained the deconvoluted image at 18.7/31.7µm
 IRAF STSDAS/Lucy task
- FWHM of deconvoluted images became approximately 3 arcseconds at each image

Temperature map

- Calculate the temperature map from 18.7/31.7um
 - \square grain emissivity is proportional to λ^{-1} (cf. Morris+, 1999)
 - □ warmer dust (140~180K): central region, polar lobes
 - \Box cooler dust (90~130K): equatorial torus, inside the lobes

Optical depth map

- Calculated the optical depth map from 31µm brightness distribution
- Large optical depth at the edge of the polar lobes and the equatorial torus (up to 1.2)

Distribution of cool dust components

- The distribution of cool dust components has been controversial:
 - Morris+99: in the equatorial torus
 - □ Smith+03: in the polar lobes
- Our observations clearly showed the cool dust components mainly resides in the equatorial torus

- In addition, the cool dust components inside the lobes are found
 - this component is in thermal equilibrium

Cool Dust Mass in the Homunculus Nebula

- Estimation of the dust mass at each part
 - $\square \ \rho \simeq 3 g/cm^3, \ a \simeq 1 \mu m$
 - A total of 0.12M_{sun} dust : consistent with Morris+ (1999) and Smith+ (2003)
 - 80% of the dust exists in equatorial torus
 - \square > 0.015M_{sun} of dust formed at the giant eruption

Cool Dust Mass in the Homunculus Nebula

- 0.012 M_{sun} dust in the Polar lobes
 - corresponds 10% of the total amount of dust in the Homunculus Nebula
- Assuming that this dust formed after the giant eruption, the dust formation ratio is 7×10⁻⁵Msun/yr
 - ☐ Much higher rate than the typical WR binary (10⁻⁷~10⁻⁶Msun/yr)

The active dust formation occurred at binary interaction in LBV binaries

Conclusion

- We carried out the observations of Luminous Blue Variables with miniTAO/MAX38
- 30 micron imaging observations of η Carinae
 - Spatially resolved the cool dust components of the Homunculus Nebula for the first time
 - Both of the giant eruption and the binary interaction make significant contributions to the dust formation at η Carinae
 - The active dust formation occurred at binary interaction in LBV binaries