Near-infrared line imaging of supernova remnant

: Background study: Wide infrared IFU observations of G11.2-0.3

2013 March 15

IoA

Ho-Gyu LEE

Motivation

Origin of bright [Fe II] emission of G11.2-0.3

Bright clumps around shell : Circumstellar materials (CSM)

High velocity (100 km/s) knots around center : Ejecta

Early works (SNRs)

- Shock model (Hollenbach & McKee 1989)
 - [Fe II] is strong near-IR line in shocked medium
- □ First [Fe II] detection of SNR (Seward et al. 1983)
 - MSH15-52; [Fe II] intensity is comparable to Hß intensity
- Graham et al. (1987, 1990)
 - IC443, Crab
- Oliva et al. (1989)
 - RCW103, Kepler, N63A, N49, N103B
- More observations
 - Cas A, Kepler (Gerardy & Fesen 2001), 3C391, W28, W44 (Reach et al. 2002, 2005), W49B (Keohane et al. 2007), G11.2-0.3 (Koo et al. 2007, Moon et al. 2009), 3C396 (Lee et al. 2009)

Integral field unit (IFU) observations of G11.2-0.3

IFU observations

- FISICA + FLAMINGOS on Kitt peak 4m telescope
- Image slicer : FISICA (works like 21 long-slit spectrographs at a single exposure)

■ FoV = 16" x 33" !

Image reconstruction

Gaussian fit at each pixel , JH bands

Images & spectra

Bright structure

Long filamentary shell

- Almost entire SE part of shell (a quarter of entire shell)
 - Clumps 1, 2, 3
- Rest velocity
 - □ Velocity < 150 km/s (unresolved by $R \sim 1500$)
- Simple structure
 - Bright peaks in the middle of shell
- Similar morphologies at all line images
- Consistent with result of SNR shock covering entire SE region
 - Supports CSM origin

Properties of clump1

Bright enough to provide distributions in several transitions

Properties of clump (II)

No correlation between intensity and n_e (or Av)

Variation of extinction (Av) at southern area

- \square Electron density (n_e) is similar through out the clump1
 - High densities around the edge of clump1

Effect of Av is small for n_e distribution

Average values

	Clump1	Clump2	Clump3
Visual extinction	16 ± 1	18 ± 1	20 ± 1
Electron density (cm-3)	9400 ± 2100	8100 ± 2800	4700 ± 1000

Radiative model for radial profile

High velocity component

Contribution by ejecta?

- Flux of HV component : ~ 4 % of total flux
 - We detect only bright, fast, separated ones
 - Cannot totally exclude a possibility of CSM + ejecta
- Observed velocity ~ 400 km/s
 - Moving speed (de-projected v) can approach to 1000 km/s

Bipolar distribution?

SE : blueshifted component -

Hint for bipolarity of SN explosion?

Summary

- Spectral cube data of southeastern filament of G11.2-0.3
 - Line images
 - Spectra
- We obtain n_e & Av maps
 - Their distributions are different from those of line images
- Comparison with model calculation of bright structure : CSM
- High velocity component : ejecta
 - Hint for bipolarity of SN ejecta distribution
- → We want to know chemistry!!!
 - MiniTAO imaging of $Pa \alpha$ (, $Pa \beta$)