ALMA/miniTAO Observations of the IR-bright Merger VV114

<u>Toshiki Saito</u>

Univ. Tokyo/NAOJ

D. Iono(PI), M. Yun, J. Ueda, D. Espada, Y. Hagiwara, M. Imanishi, <u>K. Motohara</u>, K. Nakanishi, H. Sugai, <u>K. Tateuchi</u>, and R. Kawabe Introduction Cycle 0 observations Results Discussion

Summary & future works

INTRODUCTION

U/LIRGs

FIR luminosity: > 10¹¹L_{sun}

Morphology: Merging/Interacting

Large population at z = 1 - 3

Observations < Simulations

Numerical Simulations

Key to galaxy formation and evolution andtheir associate SF environment!Galaxy disks

Shock-induced SF filament

Teyssier+10, Saitoh+10, Matsui+11

Numerical Simulations

Key to galaxy formation and evolution andtheir associate SF environment!Galaxy disks

Shock-induced SF filament

Teyssier+10, Saitoh+10, Matsui+11

VV114

z = 0.02 $L_{FIR} = 4.1 \times 10^{11} L_{sun} \text{ (Soifer+87)}$ $M_{H2} = 5.1 \times 10^{10} M_{sun} \text{ (Yun+94)}$ +: each nucleus (miniTAO/Ks-band) \rightarrow separation: 6kpc

is a mid or late stage merger

HST/ACS Evans+08

VV114W

6kpc

VV114

VV114E: Obscured SB and/or AGN mid-IR and X-ray

VV114W: Diffuse SB

VV114: Extended SFs across galaxy disks Global SFR_{Paα} ~ 45.1 M_{sun}/yr

mid-IR

Grimes+06, Le Floc'h+02, Alonso-Herrero+02, Tateuchi+in prep.

Introduction Cycle 0 observations Results

Discussion

Summary & future works

CYCLE 0 OBSERVATIONS

Science goals

(1)Dense gas kinematics & distribution → Simultaneous HCN & HCO⁺J = 4 - 3 with 0.4" resolution

(2)Dense gas mass fraction & global kinematics → ¹²CO & ¹³CO J = 3 - 2, 1 - 0 with 1.5" resolution

(3)A radiative transfer model analysis
→ quantify the dense gas density and T

Data information

- 17 19 × 12m antennas/Band3 and 7
- **CMP and/or EXT configurations**
- **Continuum emission in each observation**
- Using reduction package CASA

	Obs freq [GHz]	FOV ["]	On source time [min]	Beam size (1" = 370pc)	Critical density[cm ⁻³]
¹² CO(1-0)	112.96	53.7	38	2.0" × 1.3"	4.1×10^{2}
¹³ CO(1-0)	107.99	56.2	41	1.8" × 1.2"	1.5 × 10 ³
¹² CO(3-2)	338.86	17.9	82	1.3" × 1.0"	8.4 × 10 ³
HCO+(4-3)	349.58	17.4	86	0.44" × 0.36"	1.8×10^{6}
HCN(4-3)	347.50	17.6	86	0.45" × 0.39"	8.5 × 10 ⁶

Introduction Cycle 0 observations Results Discussion Summary & future works

RESULTS

Band 3

¹²CO(1-0) ~ 10²cm⁻³ - clearly dust lane 2,4,8,16,32,48,64,128,256 Jy/beam.km/s - σ > 100km/s between the nuclei - derived H2 mass = $4.7 \times 10^{10} M_{sun}$ **Overlap region** $^{13}CO(1-0) \sim 10^{3} cm^{-3}$ - Filamentary structure

- consistent with Pa alpha filament

6200km/s

5600km/s

¹³CO(1-0)

2,3,4,5,6,7 Jy/beam.km/s

12CO(1-0

Band 3

$^{12}CO(1-0) \sim 10^2 cm^{-3}$

- clearly dust lane
- σ > 100km/s between the nuclei
- derived H2 mass = $4.7 \times 10^{10} M_{sun}$

¹³CO(1-0) ~ 10³cm⁻³

- Filamentary structure
- consistent with Pa alpha filament

5600km/s

¹³CO(1-0)

2,3,4,5,6,7 Jy/beam.km/s

12CO 1-0

2,4,8,16,32,48,64,128,256 Jy/beam.km/s

Overlap region

6200km/s

Band 3 - extra

Band 7

HCN(4-3) ~ 10⁷cm⁻³ - Clumps at the nucleus - Specific features: E0 and E1

0.5,1,2,3,4,5,6,7,8,9,1.2,1.6,2.0,2.4 Jy/beam.km/s

HCN(4-3) ~ 10⁶cm⁻³ - Clumps at the filament

5600km/s

6200km/s

Introduction Cycle 0 observations Results Discussion Summary & future works

DISCUSSION

E0, E1, the overlap region

EO

E1

Hard & Soft X-ray

HCO⁺(4-3)

Overlap region

E0 = Obscured AGN

- point source (r < 100pc)</pre>
- broad line width (FWZI ~ 300 km/s)
- HCN/HCO⁺ ~ 1.6 (Kohno+01,Imanishi+07)
- HCN/CO > 0.6 1.2 (Aalto+97,07)

E1 = Compact starburst

- extended source (r > 200pc)
- line width (FWZI ~ 200 km/s)
- HCN/HCO⁺ ~ 0.5
- HCN/CO > 0.2 0.6

E0, E1, the overlap region

E0 = AGN E1= SB

E0

E1

HCO⁺(4-3)

HCN(4-3)

Pa alpha

UV radiation

Overlap region

CH₃OH(2-1)

Overlap = Shock-induced SF

- a part of the filament

CS(2-1)

- diffuser (HCN, CS(7-6) non-detection)
- turbulent (CO(1-0): σ > 100 km/s)
- CS(2-1), methanol(2-1) (shock tracer?)

Matched- age KS-law (Tateuchi-san's work) Aperture = 3.7" (~ 1.4kpc) Age ~ 5.5 Myr

Introduction Cycle 0 observations Results

Discussion

Summary & future works

SUMMARY & FUTURE WORKS

Summary

•CO(1-0), ¹³CO(1-0), CO(3-2)

- reveal the global kinematics consistent with simulations.

High resolution HCN(4-3), HCO⁺(4-3), CS(7-6)

- suggest an obscured AGN and extended starburst in VV114E.

-CN(1-0), CS(2-1), CH₃OH(2-1)

- show chemical differences between AGN, SB, Shock-induced SF.

Paα

- identify the clumpy filament across the galaxy disks.

Future works

LVG analysis

- NMA: HCN(1-0) and HCO⁺(1-0), SMA: CO(2-1)

Corrected KS-law

- miniTAO/ANIR: Paβ, Hα
- CO(1-0), ¹³CO(1-0), CO(3-2), CN(1-0), HCN(4-3), HCO⁺(4-3) ...

- consistent with Komugi+12?

Introduction Cycle 0 observations Results Discussion Summary & future works **THANK YOU!**