Transparency experiment

- <u>Objective</u>: To determine the transparency, T, against wavelength, λ , of the window which is to be used for the ANIR (Atacama Near-InfraRed camera) of the TAO project and to evaluate whether it is possible to use this window for the camera.
- <u>Introduction</u>: In this experiment, we will use a transparency spectrometer called "UV-3100PC". Using this machine, we are able determine the transparency of the testing material with the wavelength of the spectrum as an independent variable. For this experiment we will measure the transparency between 0.6µm and 3.0µm. This machine works by shining equal light through the two holes of the spectrometer, one through the testing material and the other without any. The latter one is considered as 100% transparency and, with respect to this one, we measure the intensity of light through the testing material.

The window which is to be tested is a material called "Fused Silica H_2O free". We are using this " H_2O free" material for infrared is slightly absorbed by H_2O which will interfere with the camera.

<u>Apparatus:</u> "UV-3100PC", "Fused Silica H₂O free" window and a computer.

Procedure:

- 1) The "UV-3100PC" was sat up with the computer.
- 2) The "Fused Silica H_2O free" was placed into the spectrometer.
- 3) The transparency of the material was measured against wavelength.
- 4) The graph was plotted on the computer.

Precautions:

- 1) Outside light must not enter the "UV-3100PC" during experiment: it must be sealed.
- 2) Have to be careful not to scratch the window.

<u>Diagram:</u>

<u>Result:</u> <u>Data:</u>

Wavelength, λ/nm	Transparency, T/%	Wavelength, λ/nm	Transparency, T/%	Waveleng λ/nm
3000	6.2650	2200	84.1900	1400
2950	4.1210	2150	86.0300	1350
2900	3.5770	2100	87.1600	1300
2850	2.4230	2050	89.2300	1250
2800	1.8950	2000	89.9100	1200
2750	3.6190	1950	90.5000	1150
2700	56.3700	1900	90.9100	1100
2650	69.8800	1850	91.4300	1050
2600	72.8700	1800	91.7600	1000
2550	73.7800	1750	92.1400	950
2500	75.4500	1700	92.5100	900
2450	77.8200	1650	92.7300	850
2400	80.3300	1600	92.9400	800
2350	82.6900	1550	93.0700	750
2300	83.4100	1500	93.1200	700
2250	83.2600	1450	92.9200	650

Wavelength, λ/nm	Transparency, T/%			
1400	91.9100			
1350	93.3800			
1300	93.4200			
1250	93.4800			
1200	93.5300			
1150	93.4800			
1100	93.4500			
1050	93.5100			
1000	93.4700			
950	93.3500			
900	93.2800			
850	93.3200			
800	93.5200			
750	93.3200			
700	93.1800			
650	92.9200			
600	97.3400			

<u>Graph:</u>

<u>Analysis:</u>

Using a reference source, our obtained graph should have looked like this if it was H_2O free Fused Silica:

However as we can clearly see, it does not look like this graph but more like the graph of a BK7.

Source: http://www.sigma-koki.com/catalog/catalog_b.html#Windows

<u>Conclusion</u>: I believe that we can clearly say from this experiment that the window was not a "Fused Silica H_2O free" but actually a BK7 which is a common crown glass that contains H_2O which, therefore, can not be used for the ANIR.