面分光研究会2019、10月30日

KMOS^{3D} Survey 但木謙一(国立天文台)

Data release and final survey paper: Wisnioski et al. 2019, accepted, arXiv: 1909.11096

Before KMOS^{3D} survey

Genzel+06

近赤外面分光観測によって、z=1-3にある星形成銀河の運動学的性質を明らかにした。 基本的には回転している。

KMOS^{3D} survey

VLT/KMOS

Wavelength coverage	0.8um to 2.5um
Spectral bands	IZ, YJ, H, K, H+K
Spectral resolving power	R = 3400 (IZ), 3600 (YJ), 4000 (H), 4200 (K), 2000 (H+K)
Number of IFUs	24
Extent of each IFU	2.8" x 2.8"
Spatial sampling	0.2" x 0.2"
Patrol field	7.2 arcmin diameter circle

2013-2018年にかけて、全部で75晩が割り当て(GTOプログラム) 0.6<z<2.7にある739個の銀河を観測

KMOS^{3D} survey

Förster Schreiber+18

2013-2018年にかけて、全部で75晩が割り当て(GTOプログラム) 0.6<z<2.7にある739個の銀河を観測

KMOS^{3D} survey

Wisnioski+19

IFUデータの解析

581/739 are detected in the Ha emission line ~470 are resolved

Wisnioski+19

8割の銀河で、回転運動が卓越している

falling rotation curves can be explained by two affects1. high baryonic fraction2. pressure support

KMOS^{3D} data release

MAX PLANCK INSTITUTE FOR EXTRATERRESTRIAL PHYSICS

C

NEWS | INSTITUTE | SCIENCE | PUBLIC OUTREACH

Home \rightarrow Science \rightarrow Infrared Astronomy \rightarrow Research \rightarrow KMOS₃D \rightarrow Data

Overview
Survey & Science
Publications
Data
Team

DATA DOWNLOAD

This data release provides the final reduced cubes observed in the KMOS^{3D} survey of galaxies at redshift 0.7 < z < 2.7. The released data include 739 unique cubes in the band encompassing H α +[NII]+[SII] line emission of 739 galaxies. The information on the structure and the four extensions of each cube along with description of KMOS^{3D} specific header keywords are presented in the \bigcirc KMOS 3D RELEASE GUIDE document and in \bigcirc Wisnioski et al. 2019.

We also release a **GALAXY CATALOG** with relevant physical parameters for each galaxy. The presented parameters in the released table are explained in Section II.3 of the release guide document. Aperture fluxes for all galaxies with detected Ha line emission and upper limits for non-detections are published in the Ha FLUX CATALOG The catalog data are stored in FITS format, and the file is a gzipped tarball (to unpack, run e.g. "tar xvfz 3d_fnlsp_table_v3.fits.tgz").

You can download all the observed galaxies, or only the targets in the COSMOS, GOODS-S, and UDS fields- **Released as of July 12, 2019. Credit:** When using KMOS3D data products release and derived parameters released here please cite Wisnioski et al. 2019.

All KMOS ^{3D} CUBES	739 targets, 3 GB
COSMOS FIELD CUBES	275 targets, 1.10 GB
GOODS-S FIELD CUBES	224 targets, 0.96 GB
UDS FIELD CUBES	240 targets, 0.95 GB

http://www.mpe.mpg.de/ir/KMOS3D

TMTで何をするか?

1. これまで感度の限界で観測できなかった銀河種族を観測する

TMTで何をするか?

2. これまで観測してきた銀河種族をさらに高い分解能で観測する

Förster Schreiber+18

KMOS: 0.5" (4 kpc) SINFONI+AO: 0.15" (1 kpc) TMT/IRIS: 0.05" (400 pc)

ALMAによる0.08"分解能

z=4.3 サブ<mark>ミリ波銀河</mark>

