理論モデルを用いた分子輝線の面分光疑似観測: 力学解析へのバイアス

 井上茂樹
 (筑波大学 / 国立天文台)

 吉田直紀
 (東京大学)

 矢島秀伸
 (筑波大学)

ALMA (Atacama Large Millimeter/submillimeter Array)

- Major strength
 - Gas physics
 - Line-spectrum study for each species
 - CO, HCO, NH₃, H₂O, OIII, CII etc...
 - 2D-spectrum study
 - Dynamical analysis

Importance of studying molecular gas (H_2)

• Molecular hydrogen is more directly relevant to star formation than ionized and atomic hydrogen.

$$(ionised) \longrightarrow (atomic) \longrightarrow (molecular) \longrightarrow (star formation)$$

- Kennicutt-Schmidt law $\Sigma_{
 m SFR} \propto \Sigma_{
 m gas}^N$
 - N~1.4 for all neutral hydrogen
 - Most of star-forming gas is molecular.

Difficulties in studying molecular gas (H_2)

• It is still difficult to observe and predict amounts of H_2 in galaxies.

• Observation:

- It is almost hopeless to directly observe H_2 since it little emits electromagnetic waves.
 - CO is used as a proxy of $H_{2.}$
 - The conversion factor α_{CO} is, however, determined empirically.
 - Assumed constant or (at best) metallicity-dependent

• Theory:

- The main channel of H_2 formation is via dust as catalyst.
- Molecules can be dissociated by UV radiation
 - The formation requires the self-shielding effects.
- Namely, various physics is involved with H_2 formation/dissociation.
 - UV radiation, dust properties, metallicity, gas pressure etc...

But, still we want to know molecules...

PAHNGS-ALMA survey

Illustris-TNG simulation

• How should we interpret the molecular observations?

mock observations for molecules by utilizing simulations.

Towards modelling CO line emission

- This study aims to build <u>a theoretical model for CO emission</u> from galaxies
 - By combining
 - Cosmological simulation (post-process)
 - Cloud model
 - Radiation transfer computation

- In this talk...
 - Mock observations for kinematic analysis with a CO line.
 - Discuss potential bias in the dynamical analysis

- Directory from simulation,
 - $\rho_{cell}, P_{cell}, M_{cell}, Z_{cell}$
- Exclude diffuse gas
 - $n_H < 0.1 \ {\rm cm^{-3}}$ (SF criterion in simulation)

- Directory from simulation,
 - $\rho_{cell}, P_{cell}, M_{cell}, Z_{cell}$
- Consider a two-phase ISM model
 - cold/warm neutral media in a cell
 - **Density contrast**: $\phi \equiv \frac{\rho_{cold}}{\rho_{warm}} = 100$
 - Pres.-equilibrium (e.g. Wolfire et al. 1995)
 - **Cold-mass fraction**: $f_m \equiv \frac{M_{cold}}{M_{cell}} \sim 0.8 1$
 - Springel & Hernquist (2003)

• Cold-volume fraction:
$$f_V \equiv \frac{V_{cold}}{V_{cell}} = \frac{f_m}{(1-f_m)\phi+f_m}$$

- Directory from simulation,
 - $\rho_{cell}, P_{cell}, M_{cell}, Z_{cell}$
- The cold gas has
 - ρ_{cold} , P_{cell} , M_{cold} , Z_{cell}
 - Jeans length $\lambda_J \equiv \sqrt{\frac{P_{cell}}{G\rho_{cold}}}$

- Directory from simulation,
 - $\rho_{cell}, P_{cell}, M_{cell}, Z_{cell}$
- The cold gas has
 - ρ_{cold} , P_{cell} , M_{cold} , Z_{cell}
 - Jeans length $\lambda_J \equiv \sqrt{\frac{P_{cell}}{G\rho_{cold}}}$
- Typical cloud size
 - $R_{cloud} = \lambda_J/2$.
 - $\Sigma_{cloud} = \rho_{cold} \lambda_J$
 - Dust abundance: $D_{cloud} = D_{MW} \frac{Z_{cell}}{Z_{MW}}$
 - Radiation field: $I_{cloud} \sim 0$
 - "well-shielded approximation"

- Input these parameters into an chemo-RT code
 - DESPOTIC (Krumholz 2014)
 - which returns molecular emissions and abundances for a cloud.
- Cumulate the cloud emissions and obtain the total value of the cell.
 - The number of clouds in a cell

$$N_{cloud} = \frac{V_{cold}}{V_{cloud}}$$

- Implying the optically-thin approx.
- Cumulate the gas cells within every single galaxy.

Applying to Illustris-TNG (z=0, TNG100-1)

• Comparing with xCOLD GASS survey (Saintonge et al. 2017)

The CO-Universe

The top 10 CO-brightest galaxies

All gas

CO(1-0) light

The top 10 CO-brightest galaxies

Applying to Illustris-TNG (z=0, TNG100-1)

In the Milky Way inner disc

• $\alpha_{CO} = 4.3 \text{ M}_{\odot}/(\text{K km/s pc}^2)$ In local main-sequence galaxies • $\alpha_{CO} = 3.6 \text{ M}_{\odot}/(\text{K km/s pc}^2)$

Dependence on the radiation fields

• Is the "well-shielded" approximation correct?

Dependence on the radiation fields

• Is the "well-shielded" approximation correct?

Kinematic analysis

Kinematic analysis

- 2D-spectrum is so powerful for kinematic analysis.
 - But, beware of potential biases.

A521: strong-lensed galaxy @ z=1

Can dynamically unstable galaxies really exist?

Toomre instability criterion: $Q \equiv \frac{\sigma\kappa}{\pi G\Sigma} < 1$

- Discs with Q < 1 are considered to be **dynamically unstable**.
 - Due to their self-gravity

Tadaki et al. (2018)

0.0

2.1

1.6

1.3

1.1 0.8

0.4

0.2

Can dynamically unstable galaxies really exist?

- What is "dynamical instability"?
 - It is a state where the system cannot hold on the current state.

It can never last long!!

How do you measure velocity dispersions?

- Difference in measurement (definition) of velocity dispersion.
 - In theory: <u>mass-weighted</u>

$$\sigma_{\rm the}^2 = \frac{\sum (v_i - \overline{v})^2 m_i}{\sum m_i}.$$

In observation: <u>flux-weighted</u>

$$\sigma_{\rm obs}^2 = \frac{\int (v_\nu - \overline{v})^2 F_\nu d\nu}{\int F_\nu d\nu}.$$

• F_{ν} : flux density of line emission

e.g. in the case of H α line, $L_{H\alpha} \propto SFR \propto \frac{m_{H_2}}{\tau_{SF}} \propto m_{H_2} \sqrt{\rho_{H_2}}$, where $\tau_{\rm SF} \sim \frac{1}{\sqrt{G\rho}}$

Mock CO(1-0) observations for dynamical analysis

Mock CO(1-0) observations for dynamical analysis

Mock CO(1-0) observations for dynamical analysis

• Replacing only σ in Q.

 $Q \equiv \frac{\sigma \kappa}{\pi G \Sigma}$

Summary

- I am developing a new model for molecular line emissions.
 - Designed to be independent from resolutions of simulations.
 - In good agreement with the observations at z=0.
 - Needs to assume all gas clouds to be well shielded.

- Kinematic analysis based on line spectra can be biased
 - depending on which line you are looking at.
 - Observed VD can be biased because it is flux-weighted.
 - The low values of Q<1 in high-z discs may be attributed to this bias.