

Euclid/WFIRSTの現状と日本の 参画について

Wide-Field Infra-Red Survey Telescope

住 貴宏 (Osaka Univ) WFIRST SDT member Dark Energy
Exoplanet Microlensing
Near Infrared Sky Survey
General Observer Program

Late 20th century's biggest discoveries

Accelerating expansion of universe

Cosmic acceleration history via
Weak lensing (WL)
Supernovae (SN)
Baryon Acoustic Oscillation (BAO)
Red shift space distortion (RSD)
Structure growth via WL, RSD
Test Einstein's gravity and Modified Gravity

Exoplanets

Complete statistical census of Planetary systems which Kepler started
 → Complementary to direct observation

Euclid/WFIRST difference

Euclid

(Dark Energy mission, 2019~)

Primary: 1.2m Life time: 6.25yr Optical Im + IR(YJH) Im, Spec FOV: 0.54deg² Wide 15kdeg², M_{AB} =24.5, YJH_{AB}=24 Deep 40deg², M_{AB} =26.5, YJH_{AB}=26

Dark Energy

Weak LensingBaryon Acoustic Oscillation

WFIRST Wide-Field Infra-Red Survey Telescope

(General observatory, 2022~) Primary: 1.1-2.4m Life time: 3-5 yr IR(JHK) Im, Spec FOV: 0.35-0.6deg² High latitude 3400deg²,YJHK_{AB}=26 Galactic Plane 1240deg²,YJHK_{AB}=25.1 Supernova wide 6.5deg², JHK_{AB}=28.1 Supernova deep 1.8deg², JHK_{AB}=29.6 Galactic Bulge 3.4deg² Dark Energy Weak Lensing Baryon Acoustic Oscillation •Super Novae Exoplanet Microlensing

Near Infrared Sky Survey

•General Observer Program (10%)

Euclid: telescope concept

Euclid images of z~1 galaxies will have the same resolution as SDSS images at z~0.05 and be at least 3 magnitudes deeper.

WFIRST design reference mission (DRM)

• DRM1, fulfill NWNH alone

- 1.3m aperture, unobscured (to fit ATLAS V)
- 5 year mission
- 2.4um cutoff
- 0.356 deg² (36 H2RG with 0.18"/pixel)
- 0.671 deg² (18 H4RG with 0.17"/pixel) DRM1
- Prisms: 1.7-2.4um (galaxy redshift survey) and 0.6-2.4um (SN)

DRM2 fulfill NWNH with Euclid, LLST(NASA contribute to Euclid)

- 1.1m aperture, unobscured (to fit Falcon9)
- 3 year mission
- 2.4um cutoff
- 0.585 deg² FOV (7x2 H4RG(-10) at 0.18"/pixel)

• Prisms 1.7-2.4um (galaxy redshift survey) and 0.6-2.4um (SN)

• NRO-1 (gifted by National Reconnaissance Office)

2.4m aperture

• 0.35 deg² FOV (16 H4RG(-10) at 0.13"/pixel)

DRM1 layout

Channel field layout for WFIRST "H2E1"

The Field of view of the single imaging & spectroscopy channel is shown to scale with the Moon, HST, and JWST. Each square is a 4Mpix vis-NIR sensor chip assembly (SCA)

Unobscured optics provide clean PSF

Each square shown is physically a 2040 x 2040 x 18um HgCdTe array [H2RG-18]

JWST [all instruments]

Iv a 2040 x um HgCdTe H2RG-18] Moon (average size seen from Earth)

Optical ray trace layout for H2E1

March 2012

DRM2 Field of view

Channel field layout for WFIRST "DRM2" The Field of view of the single channel which can be used in imaging (Im), BAO spectroscopy (Sp), or SN spectroscopy (SNSp) mode is shown to scale with the Moon, HST, and JWST. Each square is a 16Mpix vis-NIR sensor chip assembly (SCA), 10 um pixels

7x2 @ 0.18"/p, 0.585 sq.deg

HST [all instruments]

NRO-1 2.4m design Preliminary Instrument Design:

- Based on existing telescope primary and secondary mirrors without changes
- Initial wide-field instrument shown; 2nd wide-field instrument would be a mirror image
 - ♦ 3 mirror camera, folded, with filter at pupil
- Filter & prism wheels (not shown) in ea. wide field instrument 2 small, finer
- Fits within instrument volume implied by existing structs
- <u>Overview:</u> - 2 wide field instruments t 2 small, finer sampled instruments

Potential Payload

Euclid GC predicted performances

Reconstructed galaxy power spectrum

Euclid Deep+Wide surveys feasible in 5.8 years Consortium

Reference survey for sizing spacecraft: final survey not yet set.

Sky survey strategy includes:

- Deep 40deg² ,M_{AB}=26.5,YJH_{AB}=26
 Instrument calibration with specific targets
- Wide and Deep fields

Wide $15kdeg^2$, $M_{AB}=24.5$, $YJH_{AB}=24$

Photo-z: DES + Euclid data

- Optical data are full part of the Euclid mission
- Requirement 0.05x(1+z)
 - \rightarrow 4 optical band + Euclid Y, J H sufficient
 - \rightarrow Need to get optical data from ground-based telescopes

Euclid : Ground surveys for visible data

•Southern sky almost secured:

- DES,
- e-KIDS,
- LSST?
- Northern sky not yet secured: several options explored:
 - PS2,
 - WHT,
 - HSC

External survey timelines	2011	2012	2013	2014	2015	2016	2017	2018	Survey	Area (sq deg)	U	G	r	i	z	Y	J	н	к
KiDS- VIKING	Survey underway		VIKING completed	KiDS completed, VIKING final release	, KiDS final release				KiDS+VIKING	1500 Eq+SGC	24,8	25,4	25,2	24,2	23,1	22,3	22.0	21,5	21,2
Pan- STARRS1	Survey underway		Survey completed		PS1 final release				Pan-STARRS1	15000 NGC+½ SGC		23,4	23.0	22,7	22,0	20,9			
Pan- STARRS2				Survey start						15000									
DES		Survey start		1st data release		Survey end	Final data release		PS2	NGC+½ SGC		24,8	24,4	24,1	23,4	22,3			
LSST								2020?											
HSC?									DES	5000 ½ SGC		25,4	24,9	24,8	24,7	22,3			

Euclid

WFIRST fields

Dark Energy
Exoplanet Microlensing
Near Infrared Sky Survey
Guest Investigator Program

planetary microlensing

Survey & follow-up from Ground

Next generation 24h survey network

24時間連続観測によって、追観測なしで惑星検出を約17個/年に大幅に上げる

Extraction of Exoplanet Signal

- •300Mstars
- •15min cadence
- •72 day continuous observation x7

Detailed fitting to the photometry yields the parameters of the detected planets.

Free-Floating Planet, events with timescale t_E< 2 days

 $R_E(M,D)$ $t_E =$ $\sim \sqrt{M/M_J} day$ ~20days for stars \mathcal{V}_{t}

M:lens mass M_J: Jupiter mass D:distance v_t: velocity

WFIRST can detect •2000 free-floating planet •100 (< M_{\oplus})

Kepler vs. WFIRST

Complete the census of planetary systems in the Galaxy

•3000 bound planet, 200 (< 1 M_{\oplus}) •2000 free-floating planet,100 (< 1 M_{\oplus})

Ground-based confusion, space-based resolution

- Space-based imaging needed for high precision photometry of main sequence source stars (at low magnification) and lens star detection
- High Resolution + large field + 24hr duty cycle =>WFIRST
- Space observations needed for sensitivity at a range of separations and mass determinations

NRO 2.4 m design: factor 2 faster survey

Performance of NRO-1 2.4-m compared to SDT WFIRST (DRM1). The images compare an "equal-duration, equal-area" survey of a Galactic Bulge field (assuming a 2.4-m field of 0.25 sq deg). The total area covered in 15-minute cycles is 2.5-deg, with 7 DRM1 fields or 10 2.4-m fields.

Matthew Penny (OSU)

GO & Archive sciences

- 1. Open Cluster and Star Forming Region IMFs to Planetary Mass
- 2. Exoplanet via transit and Astrometry
- 3. High-precision IR CMDs of stellar populations.
- 4. Quasars as a Reference Frame for Proper Motion Studies (LMC,GB)
- Proper Motions and Parallaxes of Disk and Bulge Stars (~10µas/yr)
- 6. White dwarfs.
- 7. Nearby Galaxies
- 8. Galaxy Structure and Morphology
- 9. Evolution of Massive Galaxies
- 10.Distant, High Mass Clusters of Galaxies
- **11.Obscured Quasars**
- 12.Strongly Lensed Quasars
- 13.Strong Lensing
- 14.High-Redshift Quasars and Reionization
- 15.Faint End of the Quasar Luminosity Function
- 16. Probing the Epoch of Reionization with Lyman- α Emitters

Possible contribution to Euclid/WFIRST from Japan Hardware (for WFIRST):

- Flight calibration system
- Integral field spectrograph
- Fine guidance sensor
- H4RG development by IRSF
 - \rightarrow long-term characterization

Non-Hardware:

4kx4k H4RG

- Data from a wide-area sky survey performed at the Subaru telescope, designed to complement the Euclid/ WFIRST observing program
- Data processing and archiving

summary

 Euclid/WFIRST conduct deep & wide-field optical/IR survey

- Dark Energy
- Archival science

WFIRST complete statistical census of exoplanet
 Combining with Kepler

 WFIRST has General Observer program-->2.4m may increase GO time

Japanese contribution is demanded.