Phasing the mirror segments of the Keck

telescopes:

the broadband phasing algorithm
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To achieve its full diffraction limit in the infrared, the primary mirror of the Keck telescope (now
telescopes) must be properly phased: The steps or piston errors between the individual mirror segments
must be reduced to less than 100 nm. We accomplish this with a wave optics variation of the Shack—
Hartmann test, in which the signal is not the centroid but rather the degree of coherence of the individual

subimages.

Using filters with a variety of coherence lengths, we can capture segments with initial

piston errors as large as 30 wm and reduce these to 30 nm—a dynamic range of 3 orders of magnitude.
Segment aberrations contribute substantially to the residual errors of ~75 nm. © 1998 Optical Society

of America
OCIS codes:

1. Introduction

One of the greatest challenges associated with the
segmented design of the Keck telescopes is the
achievement of diffraction-limited images in the in-
frared. To accomplish this, the individual images
from the 36 primary mirror segments must not sim-
ply be superposed, but must be superposed coher-
ently; that is, the steps or piston errors between
segments must be reduced to a small fraction of a
wavelength: The segments must be phased. By
contrast, the incoherent superposition of the images,
appropriate for optical observations, is a simpler
task, and the details of how this is done at Keck are
described elsewhere.1-3

How accurately must the telescope be phased?
At optical wavelengths, phasing is not a concern.
Phasing effects are washed out by the atmosphere
because the atmospheric coherence diameter r is
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small (20 cm at a wavelength of 0.5 pm for the
0.5-arc sec seeing that is typical of Keck*) compared
with the circumscribed segment diameter (1.8 m).
However, r, scales with wavelength as \%/°5
Thus, at A = 3 wm, r, is comparable to a segment
diameter, and at A = 13 pm it is equal to the full
diameter of the telescope. (Keck is designed to be
used at wavelengths as long as 20 pm.) This
means that at longer wavelengths phase errors can
seriously degrade the telescope performance. This
is illustrated in Fig. 1, which shows the predicted
point response function for a variety of wavelengths
(from 0.5 to 10 um) and rms phase errors (from 0 to
©). (In this paper we specify phase errors at the
glass surface, not at the wave front where they
would be a factor of 2 larger.) To generate these
point response functions we start with the diffrac-
tion pattern for a particular configuration of the
primary mirror segments with a Gaussian distribu-
tion of phase errors characterized by a standard
deviation op and no tip-tilt errors. We then (ana-
lytically) average over all possible configurations
consistent with this op and finally convolve the re-
sult with the seeing profile for r, (0.5 pm) = 20 cm.
At a wavelength of 0.5 pm, the resolution is limited
by the atmosphere and the full-width at half-
maximum (see the left-hand column of profiles in
Fig. 1) is 0.5 arc sec, independent of phase error.
On the other hand, phase errors can have a devas-
tating effect on the resolution at longer wave-
lengths, as can be seen in the last two columns at
the right of the figure. However, we note that it is
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Fig. 1. Theoretical point response functions for the Keck tele-
scope, assuming an atmospheric coherence diameter of 7, (0.5 pm)
= 20 cm for a variety of wavelengths and piston errors of the
primary mirror segments. The profiles are averaged over an en-
semble of primary mirror configurations that are consistent with
the given rms piston error. All plots are to the same scale.
FWHM of the images is 0.5 arc sec at A\ = 0.5 pm. Note the
devastating effects of phase errors at the longer wavelengths.

difficult to distinguish phase errors of 100 nm from
phase errors of 0 at any wavelength; the effects of
poor phasing begin to manifest themselves at phase
errors of approximately 200 nm. This is essen-
tially the argument that sets the Keck phasing tol-
erance at =100 nm for normal observing. We note,
however, that for planned adaptive optics (and
speckle imaging) work, this tolerance may have to
be tightened somewhat.6

We developed two phasing algorithms, narrow
band and broadband, to achieve the above phase
specification. Throughout this paper we use these
words in a rather specific context. By broadband we
mean that we explicitly consider (and exploit) the
finite spread in the wavelength of the light. Such
finite bandwidth effects can manifest themselves (for
large phase errors) even if the bandwidths are small
in the sense that AN << N. Thus in the broadband
phasing algorithm we occasionally use a near-
infrared filter with a bandwidth of 10 nm, even
though in most other contexts this would be thought
of as a narrow filter. By contrast, narrow band
means that finite bandwidth effects are unimportant,
and the diffraction effects of interest can be derived
under the assumption that the light is monochro-
matic.

Before we discuss their development, we briefly
compare some of the important properties of narrow-
band and broadband phasing. Narrow-band phas-
ing is by far the simpler process to understand; thus
we present it first for pedagogic reasons. In princi-
ple, narrow-band phasing should be the more accu-
rate procedure; however, it appears to be somewhat
less stable, as we show below. As a result, the ac-

curacy we have achieved to date with narrowband
phasing is comparable only to what we have obtained
with the broadband algorithm. Once these narrow-
band stability problems are solved, we hope to run
these procedures sequentially, but at the present
time, virtually all phasing at Keck is done with the
broadband algorithm alone. The main exception—
and it is a significant one—is that narrowband phas-
ing provides an important check on the broadband
method, particularly with respect to the ring mode
distortion caused by dispersion (see Section 7).

In the narrowband algorithm, the segments are
pistoned through small steps that are approximately
equal to the desired phasing accuracy, essentially
until the zero phase error condition is recognized.
This means that the number of steps required is pro-
portional to the initial uncertainty in the phase. On
the other hand, in the broadband algorithm the step
size can be chosen to match the initial phase uncer-
tainty. Because the accuracy is also proportional to
the step size, the procedure can be iterated with the
step size for each iteration equal to a fixed fraction of
the previous step size. This means that the total
number of steps in the broadband procedure in-
creases only as the log of the initial phase uncer-
tainty. This is a profound advantage; it greatly
extends the capture range for the broadband algo-
rithm. This in turn eliminates the need to prephase
the segments mechanically with a hand-held
spherometer—a  tedious and time-consuming
procedure’—to obtain the initial phase uncertainty
within approximately a micrometer, as would be re-
quired with the narrowband algorithm.

Our central point in this paper is that with the
broadband phasing algorithm we can reliably phase
the segments of the telescope to a rms piston error of
less than 100 nm. This value is sufficiently small
that it is virtually indistinguishable from zero for
normal observing applications (excluding speckle or
adaptive optics). The argument that we can phase
to this level is presented in two parts. First we show
that the procedure converges rapidly. It is easy to
quantify this: We simply execute the phasing pro-
cedure and then execute it again. Because the rms
difference between the phasing measurements in two
successive runs should be \/égtimes larger than the
difference between a given measurement and the
truth, we define the repeatability to be the rms dif-
ference between two successive phasing measure-
ments divided by V2. The repeatability of the
phasing method is then approximately 30 nm. (We
prefer the somewhat more conservative term repeat-
ability to the term accuracy, because, strictly speak-
ing, we are measuring the convergence of a single
method, as opposed, say, to measuring our residual
errors by means of a second, more accurate method.)
That we can repeatedly and reliably put the telescope
into the same optical configuration is already a sig-
nificant result, but we further argue that this is the
correct or optimal configuration with regard to seg-
ment pistons. The optimality argument is based
both on the close agreement between numerical sim-
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Fig. 2. Geometry of the primary mirror of the Keck telescope
showing the 78 circular subapertures that sample the interseg-
ment edges in the phasing procedure. Each segment is 0.9 m on
aside. The subapertures are 12 cm in diameter. The 35 periph-
eral subapertures are used for pupil registration. The six subap-
ertures on the innermost edges (not shown) are obscured by the
tertiary mirror and secondary baffles and are not used in the
phasing procedure.

ulations and actual results and on the consistency
between the solutions found by the narrowband and
broadband algorithms, which utilize substantially
different diffraction effects and largely independent
software.

In the following sections we first briefly describe
the Keck telescope itself and then the hardware of the
phasing camera, which accomplishes the optical
alignment of the telescope. We then examine the
diffraction effects associated with out-of-phase seg-
ments. Although it is not our principal focus of this
paper, we first discuss the narrowband phasing algo-
rithm, because, as noted above, this provides a simple
context in which to introduce some of the ideas be-
hind the broadband algorithm. Finally we discuss
broadband phasing, including its operational details,
systematic effects, and performance.

2. Keck Telescope

The primary mirror of the Keck telescope consists of
36 hexagonal segments that fit together to form a
single optical surface with the same area as a circle
with a diameter of 10 m (see Fig. 2). Each seg-
ment, 90 cm on a side, is controlled in its out-of-
plane degrees of freedom by three mechanical
actuators on the back of the segment. (The three
in-plane degrees of freedom are passively con-
trolled.) There are two capacitive displacement
sensors on each of the 84 intersegment edges that
sense changes in the local relative heights of the
segments. The sensors and actuators are the es-
sential elements of the telescope active control sys-
tem (ACS), which freezes the relative positions of
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the segments, stabilizing the structure against
gravity, thermal effects, and wind.8°® However
(and this point is commonly misunderstood), there
is no optical reference in the ACS; the ACS stabi-
lizes the sensor readings at their desired values
once these are determined—i.e., once the telescope
has been aligned optically—but it has no internal
way of determining these desired values.l’® The
optical alignment task, including tip, tilt, and pis-
ton of the segments, falls to the phasing camera
system, described in Section 3.

3. Phasing Camera Description

The Keck Observatory phasing camera system?2-11 is
a Shack—Hartmann-type wave-front sensor that is
permanently mounted at the left-bent Cassegrain
focal station of the Keck telescope (one for each
telescope). The versatility of this system comes
from the ability to place a variety of optical ele-
ments at or near the exit pupil. For segment phas-
ing, the key element is an array of 2 mm X 3 mm
prisms, which replaces the usual lenslet array in a
traditional Shack—Hartmann camera. This prism
array is preceded by a mask at the position of the
exit pupil. The mask, at a scale of 1/200 of the
primary mirror, defines small circular subapertures
(12 cm in diameter referred to the primary) at the
center of each of the 84 intersegment edges (shown
to scale in Fig. 2). (The six innermost interseg-
ment edges are obscured by the secondary mirror
baffles and the tertiary tower; thus only 78 of the
edges are actually imaged.) The size of the subap-
ertures is chosen to be significantly smaller than
the atmospheric coherence diameter r, of approxi-
mately 20 cm at a wavelength of 0.5 pm or 27 cm at
our shortest operating wavelength of 650 nm. This
ensures that the results will be insensitive to atmo-
spheric turbulence in all but the poorest conditions.
The optical power for this array is provided by a
single downstream objective lens (85 mm, f/1.2).
This prism array/objective combination is function-
ally equivalent to an ordinary lenslet array. The
advantage of the prisms is much higher image qual-
ity (in most lenslet applications one is typically in-
terested only in the first moments of the subimage
distribution). In addition, it is easier to generate
the required very high focal ratio (f/140) with this
design, and problems of mask and lenslet registra-
tion are virtually eliminated.

The mask—pupil registration is critical to this mod-
ified Shack—Hartmann scheme as the subapertures
must be aligned accurately with respect to the inter-
segment edges. We measure this registration (and
monitor it with every CCD exposure) by means of an
additional subaperture on 35 of the 40 outer segment
edges (also shown in Fig. 2). If the mask is regis-
tered accurately, each of these peripheral subaper-
tures will be exactly half on and half off the pupil, and
the associated 35 subimages will all have precisely
the same intensity (i.e., half the intensity of a non-
peripheral subimage). For small registration er-
rors, the misalignments in the one rotational and the



two translational coordinates are linear functions of
the 35 peripheral spot intensities.’2 We can make
these measurements to an accuracy of a few hun-
dredths of a radian in rotation and a few millimeters
(referred to the primary mirror) in translation. The
entire camera is mounted on an instrument rotator so
that the rotation angle can be adjusted; translational
adjustments are made with a beam-shearing window
on a two-axis mount in the collimated beam. Rota-
tional adjustments are needed only during instru-
ment installation and are therefore done manually.
Translational adjustments are needed often because
of flexure in the camera and telescope structure with
elevation and are made quickly and automatically.
A small cross hair (with 30-mm-wide lines, referred
to the primary) across each nonperipheral subaper-
ture provides a useful dead band (+=11.5 mm beyond
the 7-mm effective intersegment gap) over which the
system is insensitive to mask—pupil registration er-
rors.

With a single exposure on a moderately bright star
(typically 4th to 7th magnitude), we obtain 78 indi-
vidual and well-separated subimages or diffraction
patterns on the detector (a 1024 X 1024 Cassini
CCD), one subimage for each unobscured interseg-
ment edge. The image scale of 6.77 pixels/arc sec
ensures that the subimages are well sampled. (Note
that the size of the subimages is set by the 12-cm
subaperture diameter, not by the atmospheric coher-
ence diameter because, as noted above, the latter is
typically larger by a factor of 2.) The separation of
nearest-neighbor subimages on the detector is ap-
proximately 60 pixels or 9 arc sec. An efficient com-
puter search algorithm finds the subimages in each
CCD image and identifies them with their corre-
sponding intersegment edges, without the need for
operator assistance.

4. Single-Subaperture Diffraction

We first focus our attention on a single intersegment
subaperture, and for now we consider the light to be
monochromatic. The details of the diffraction pat-
tern formed by this subaperture are sensitive to the
physical step height between the two segments, as
the following analysis shows. We follow the basic
approach, and to a large extent the notation, of Born
and Wolf.13

Let p, with rectangular coordinates (¢, ) (in units
of length) or circular coordinates (p, 0), be the position
vector in the subaperture plane and let o, with rect-
angular coordinates (x, y) (in radians) or circular co-
ordinates (w, {s), be the position vector in the image
plane. We consider a circular subaperture of radius
a, straddling two segments divided by the line = 0;
the upper segment (n > 0) has a piston error of /2,
and the lower segment (n < 0) has a piston error of
—38/2. (Thus 3 is the physical step height; the cor-
responding wave-front step height is 23.)

In the absence of other aberrations, the complex
amplitude in the image plane f(w; £8) is simply the

Fourier transform of the (complex) subaperture func-
tion f(p; k9J).

exp(ikd) n=0;p=a
f(p; kd) = {exp(—ikd) m <0;p=a, (1)
0 p>a

., 1 (= [
f(o; k8)=2f J exp(tkd)exp(ikp * w)pdpdo
Ta

0 vo

1 0
+7

ma® J.

where £ = 27/ and the normalization is chosen such
that the on-axis, in-phase intensity is unity (see be-
low). For simplicity and clarity in this discussion,
we neglect the relatively small effects that are due to
the aperture cross hairs (but these are incorporated
into all actual data analysis). It is not hard to show
that the imaginary part of f vanishes and we have

J. exp(—ikd)exp(ikp - w)pdpdh,

0

(2)

R 2 w [a
flw; kd) = a&2JA J. cos(kd + kp - m)pdpdd. (3)
iy

0 vo

The intensity in the image plane is simply
I(w; k3) = F*(w; kD). (4)

This integral can be handled numerically by two-
dimensional fast Fourier transform techniques; how-
ever, a modest amount of analysis can make the
calculation more efficient and also provide some in-
sight into the problem. We first consider some spe-
cial cases.

(1) When the segments are in phase, we have 8 = 0
and

Pl 0) = 2, f ’ f coskp - w)pdpdd.  (5)
mwa

0 vo

The 6 integral is independent of ¥. Thus we have
the familiar result

. 2 (e
f(w; 0) = azj Jo(kpw)pdp, (6)
0
2
kaw

Note that I(0; 0) — 1 as claimed. The integrated
intensity in these units (which is the result for any
phase) is

L= [ [ Hwedod L 8)
tot — w‘”‘”‘l’_kzaz_,n_ar

0 0
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Fig. 3. Theoretical diffraction patterns (monochromatic light) for
a split circular subaperture of radius a with a physical step 8
between the two halves given by 25 = 0, w/11, 2w/11, ..., 10w /11.
The boxes are 15/ka rad on a side.

(2) The two segments are maximally out of phase
when 8 = \/4, in which case k5 = w/2 and

. T 2 [ [« .
f(w; ) =—-— f f sin(kp - w)pdpdd,  (9)
0

2 m™a
0

; do, (10)

2 ("ucosu—sinu
u

0

where u = kaw cos(0 — ). Despite the superficial
similarity between Eqgs. (5) and (9), the 6 integral
here does not readily simplify.

(3) The case of arbitrary 8 can be constructed
readily from f(w; 0) and f(w; w/2). We have

2
I(w; k3) = [cos k5 F(e; 0) + sin k8 ff(w; ;)] NGE)

Figure 3 shows the theoretical diffraction patterns
for a sequence of 11 equally spaced values of & from %3
= 0 to £3 = 10w/11. The phase sensitivity is clear.
When the two segments are in phase, one obtains the
usual circular diffraction pattern (Airy disk). For
small & > 0 the peak location shifts to

16 d
y=—-"". (12)
3ma
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[To see this, expand Eq. (11) for small 8 and small w.]
One can obtain both the sign and the magnitude of
Eq. (12) by approximating this stepped subaperture
to first order by the best-fit plane. As 8 is increased,
the original peak continues to shift downward, and a
second diffraction peak appears near the top of the
subimage. The shift of the original peak, and the
relative intensity of the second peak, both increase
with increasing 8.

The two peaks become equal at a physical step
height of /4, corresponding to an overall path dif-
ference of \/2 between the two halves of the circular
subaperture. As 3 continues to increase, the second
peak continues to grow at the expense of the first
until, at /2 (a path difference of \), it has replaced
and is indistinguishable from the original peak. The
separation of the two peaks is weakly dependent on
the phase difference, varying from kaAw = 5.14 as k3
— 0 to kaAw = 5.29 for k3 = m/2.

At this point, for the first time in this development,
we consider explicitly the finite wavelength interval
AN ~ 27Ak/k? spanned by the light; this involves the
integration of Eq. (11) over 2. The finite spread in
wavelength becomes significant for the trigonometric
factor in Eq. (11) when the condition AN << A\2/23 is
violated. For future reference we abbreviate \2/2A\
as [ and refer to it as the coherence length. (The
factor of 2 in the denominator is to some extent ar-
bitrary, but is motivated by the fact that the path
difference doubles on reflection.) The spread in
wavelength becomes significant for the f factors when
the (generally less restrictive) condition AN << \ is
violated. For simplicity here we assume AN/\ << 1,
but make no assumption about the relative size of §
and [. This means that when we integrate Eq. (11)
over k, we can approximate the implicitly £k-
dependent f factors by evaluating them at the mid-
point of the % interval, but the sin 28 and cos k3
factors must be explicitly averaged over k.

We assume a Gaussian bandpass in k:

1 (e — k)
g(k)‘TW; exp[ T o0 ] (13)

Note that, to within a constant of order of unity, o, is
simply the reciprocal of . If we interpret A% as the
FWHM of Eq. (13), then Ak = V8 In(2) 0;, and from
the definition of [ we obtain

T 1 1334

7 8 1n(2) !

To perform the & averaging, we multiply the right-
hand side of Eq. (11) by g(k) and integrate over k.
Extending the integrals to 2 = — introduces negli-
gible error. We then obtain

(H(w; 1)) = 0af*(053 0) + o f (o3 0)?((»; ;)

+ asfz(w; ;) , (15)
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Fig. 4. Theoretical diffraction pattern for a split circular subap-
erture of radius a with a step between the two halves in the
incoherent limit: & >> A2/2AN. Asin Fig. 3, the box is 15/ka rad
on a side.

where the angled brackets denote % averaging and

1
oy = 5[1 + exp(—20,,°8%)cos 2kD],
Qg = exp(—20'k282)sin 2k08,
1
o = 5[1 — exp(—20,28%)cos 2k3]. (16)

This reduces correctly to Eq. (11) as 6,8 — 0. At the
opposite extreme, as 0,8 — %, we obtain

1 iy
(oy; ) = 2 [I(w; 0) + I(w; 2)] , (17)

i.e., the intensities from the two semicircular subap-
ertures simply add incoherently. This incoherent
diffraction pattern is shown in Fig. 4.

The narrow-band algorithm is based on our ex-
tracting the phase (3) information contained in the
trigonometric factors of Eq. (11). The broadband al-
gorithm is based on our extracting the phase infor-
mation contained in the coefficients (a4, oy, a5) of Eq.
(15). We now describe these respective algorithms
in some detail.

5. Narrow-Band Phasing

Equation (11), which describes the sinusoidal varia-
tion in the appearance of the diffraction pattern with
k3, is the basic equation of narrow-band phasing. In
principle, given a diffraction pattern (in terms of pixel
intensities on a CCD) corresponding to an arbitrary
step height (and ignoring the 27 phase ambiguity for
now), we could extract by means of surface fitting to
this functional form. However, a more robust and
numerically efficient approach, which accomplishes
the same thing, can be formulated in terms of corre-
lation analysis. To this end (for future cross corre-
lation) we generated a set of 11 theoretical diffraction
patterns in the form of artificial CCD subimages cor-

responding to Fig. 3, but of the appropriate resolution
and including the effects of the cross hairs. The
choice of 11 steps represents a compromise between
speed and accuracy; also, the algorithm that recon-
figures the primary mirror between steps (see below)
can more easily accommodate an odd number of
steps. Note that it is not necessary to span a full
half-wave, since physical step heights of 0 and \/2
are indistinguishable. In principle we should per-
haps convolve our theoretical diffraction pattern tem-
plates with the expected seeing profile before
comparison with the data. However, for a 12-cm
aperture and a typical value of r (at 0.5 pwm) of 20 cm,
the Strehl ratio is between 0.78 and 0.86 for our
observing wavelengths of 0.65—-0.90 um. Thus see-
ing has a relatively small effect on the diffraction
pattern and, in the interest of simplicity, we ignore it.
This does not bias the measurement of phase, but
may result in a slight loss of signal-to-noise ratio.
We can determine the height of an individual edge
to the nearest template step by cross correlating the
diffraction pattern pixel by pixel against all 11 tem-
plates and selecting the template that gives the max-
imum correlation coefficient. We refer to the
number (1 to 11) of the correlation-maximizing tem-
plate as the correlation index. To be precise, for the
(linear) correlation coefficient we use Pearson’s r:

- 20 —x)(y; — )
[2:(x; — 3_5)2]1/2[25(3’1' - 3_’)2]1/2 '

Here x; is the intensity in the ith pixel of the image,
y; is the intensity in the corresponding pixel of the
template, and the overbars represent averages. The
sum is taken over all pixels in a 33 X 33 pixel box
(approximately 5 arc sec on a side) centered on the
centroid of the image. (This centering requires re-
registering the image with respect to the pixel bound-
aries, as described below.) For a discussion of the
properties of Pearson’s r, including a subroutine for
calculating it, see Press et al.1* Note that r is inde-
pendent of the normalization of both the image and
the template; it is also unaffected by a constant offset
in the pixel counts. This means that no rescaling of
the images or background subtraction is necessary.
Because we have only 11 template images, there will
be a quantization error in the index of the best fitting
template, corresponding to step height errors as large
as *\/44 or approximately =20 nm. Although such
errors are not large, they are also not negligible com-
pared with the ultimate accuracy of the phasing pro-
cedure (see below), so it is advantageous to refine the
piston estimate by interpolation. In a small neigh-
borhood of its maximum, the correlation index should
vary quadratically with the step height error; indeed,
numerical calculations show that the correlation in-
dex is always within 0.7% of its quadratic approxi-
mation when we are within \/22 of the true step
height. Thus we can refine the phase estimate by a
simple quadratic interpolation over this range (i.e.,
+1 unit in the correlation index).

For improved accuracy we use the telescope ACS to

(18)
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piston the segments so as to shift each intersegment
edge step to 11 different positions. (It is convenient
but not essential to have the number of measurement
positions equal the number of template steps.) Al-
though in principle a single exposure per edge would
be sufficient, we find that this multiple-position tech-
nique reduces both statistical and systematic errors.
The step height measurements are made on all in-
tersegment edges in parallel. To do this we define
11 configurations of the primary mirror for which
each edge is shifted to all 11 possible steps (in units
of \: —5/22, —4/22, —3/22, ..., 3/22, 4/22, 5/22)
exactly once each (although different edges pass
through step 0, at different times); see Ref. 15 for a
unique way to take these measurements. A CCD
exposure is recorded for each of the 11 configurations.

For every intersegment edge in every configuration
or CCD exposure we extract a 33 X 33 pixel array
containing the diffraction pattern for that edge.
Prior to the extraction, the diffraction pattern or sub-
image must first be reregistered with respect to pixel
boundaries so that the centroid coincides exactly with
the array center, not just to within the nearest pixel.
(We choose the centroid as the origin of the local
coordinate system because we do not accurately know
the absolute origin.) The intensity of a pixel in the
new centroid-centered grid is the weighted sum of the
original pixels that it overlaps where each (old) pixel
is weighted by its respective spatial contribution.
Although the templates are generated with respect to
an absolute origin, they are similarly reregistered to
facilitate comparison with the data. Each 33 X 33
data array is then cross correlated against the tem-
plate sequence, and we derive an interpolated phase
as described above. Because there are three possi-
ble edge orientations (see Fig. 2), we have templates
of the three different orientations stored on disk for
this comparison.

Because the diffraction pattern is a periodic func-
tion of & with a period of \/2, the conversion from
phase (in units of a wavelength) to step height (in
units of micrometers) involves the addition of an in-
teger number of half-waves; this unknown integer
cannot be extracted from purely monochromatic data.
We can resolve this problem of absolute phase ambi-
guity, corresponding to determining the appropriate
integer number of half-waves, within the narrow-
band technique by making measurements at two dif-
ferent wavelengths. Details are given in Appendix
A. Once the 78 edge heights are determined, they
are stored for further analysis. The subsequent
analysis is identical in the narrow-band and broad-
band algorithms; therefore a discussion is deferred to
Section 6.

We can readily evaluate the repeatability of the
narrow-band phasing algorithm by running the algo-
rithm, sending the resulting piston corrections to the
primary mirror, and then repeating the procedure.
As noted above, the second set of piston corrections
should then be V2 times the repeatability of the pro-
cedure. From June 1995 to September 1996 there
were 19 times when narrow-band phasing was run
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twice in arow. The mean piston error for the second
trial of each pair was 47 nm, corresponding to a re-
peatability of 33 nm.

As good as the above repeatability is, it is in some
sense considerably worse than expected. Because
we make multiple measurements of the phase at each
edge, we can generate an internal estimate of the
phase measurement errors for each of the two wave-
lengths (prior to the determination of the appropriate
integer number of half-waves to be added). In the
above 19 pairs of trials, the average internal errors
were less than 10 nm. The discrepancy between the
10-nm internal errors and the 33-nm repeatability
presumably indicates that, for a few of the 78 edges,
we resolved the absolute phase ambiguity incorrectly
in one of the two pairs of measurements (see Appen-
dix A for details). This problem may result from the
segments drifting slightly between the measure-
ments at the two different wavelengths. We are con-
tinuing to investigate this problem, but even at the
present level of repeatability, the narrow-band algo-
rithm provides an important check on the broadband
technique, as described below.

6. Broadband Phasing

The defining equation of broadband phasing is Eq.
(15), which describes how the diffraction pattern
washes out as 0,8, or equivalently 3/, becomes sig-
nificant. The length scale of interest for piston er-
rors is now not \/2 but [. Therefore imagine a
sequence of stepped exposures analogous to that in
narrow-band phasing, except that now we select 11
steps spanning not a half-wave but rather roughly
the coherence length /. For a specific example, con-
sider a filter with a bandwidth of 10 nm and a central
wavelength of 891 nm, corresponding to a coherence
length of [ = 40 pm. On the basis of Monte Carlo
calculations described below, we choose a step size of
6 pm (or 150 times the typical narrow-band step size
of 40 nm). The full range spanned by these steps is
then =30 wm with respect to the nominal position.

A typical sequence of real CCD images generated in
this manner for a particular intersegment edge is
shown in Fig. 5. The first and last steps of the se-
quence are significantly out of phase, and the diffrac-
tion patterns closely resemble the completely
incoherent subimage of Fig. 4. As we approach the
middle subimages of the sequence, the patterns be-
come more and more coherent. We emphasize that
the parameter of interest is the degree of coherence of
the subimage (a quantity that we define below), not
the precise value of the phase; the latter varies rap-
idly from subimage to subimage because of the large
step size.

We now quantify the degree of coherence of a sub-
image. One way to do this is suggested by an in-
spection of Fig. 5. First rotate this figure
counterclockwise by 30 deg so that the subimages
match the orientation of the templates (Fig. 3). Now
consider, for example, the fourth through seventh
subimages of Fig. 5 (labeled —12 pm through +6 pm).
Each of these bears a fair resemblance to one or an-
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Fig. 5. Typical broadband sequence of CCD subimages. The
step size is 6 pm and the coherence length is 40 pm. The edge is
in phase between the fourth and fifth subimages (see top panel of
Fig. 7). Boxes are 5 arc sec on a side.

other of the template subimages. By contrast, the
first and last subimages of Fig. 5 bear little resem-
blance to any of the template subimages because the
details of the diffraction patterns of the former are
washed out by incoherence effects. Thus one mea-
sure of coherence is to correlate the subimage in ques-
tion with each of the template subimages and select
the maximum correlation coefficient (after interpola-
tion). The coherence of the (monochromatic) tem-
plate subimages themselves is then unity by
definition, as is sensible. However, the coherence of
the completely incoherent subimage (Fig. 4) is a dis-
appointingly large 0.88 (determined by numerical in-
tegration), so that the dynamic range of the coherence
parameter—and, as a result, the signal-to-noise
ratio—is uncomfortably small.

We can improve the definition of coherence by not-
ing that there is information contained not only in
how closely a subimage resembles the template sub-
image that it most resembles (the maximum correla-
tion), but also in how little it resembles the subimage
that it least resembles. Thus, for example, the (com-
pletely coherent) in-phase (k3 = 0) template image
has little correlation with the template images with
kd ~ /2, but the incoherent image of Fig. 4 has at
least a moderate correlation with all the template
subimages. Therefore we define the coherence as
the maximum minus minimum correlation coefficient
in the above sense. The coherence of the template
subimages themselves then ranges from 0.88 to 0.97
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Fig. 6. Theoretical curve of coherence parameter versus edge step
height for a filter with a central wavelength of 891 nm, AN = 10 nm,
and a coherence length of 40 pm. The solid curve is the best-fit
Gaussian approximation.

(ideally they would have been unity), whereas the
coherence of the completely incoherent subimage is
0.31, where all the above quantities have been deter-
mined numerically. Note the large improvement in
the dynamic range of the coherence parameter. For
convenience, we subtract the latter value of 0.31 from
all coherence parameters so that the coherence of a
completely incoherent image is zero.

In Fig. 6 we plot the coherence parameter as de-
fined above versus the step height for a series of
numerically generated images corresponding to Eq.
(15), defined by a filter with a wavelength of 891 nm
and a bandwidth of 10 nm. The characteristic hor-
izontal scale of the curve is simply the filter coherence
length of [ = 40 pm. Apart from considerable high-
frequency structure, the curve can be well approxi-
mated by a Gaussian, as shown in Fig. 6. In fact, in
practice we simply use the Gaussian approximation;
the high-frequency structure is treated as noise.
For our purposes it makes little difference that the
origin of the noise is theoretical rather than observa-
tional. The actual coherence parameters corre-
sponding to the diffraction patterns in Fig. 5 are
shown in the top panel of Fig. 7.

Because the characteristic scale of the coherence
function plotted in Fig. 6 is the coherence length of
the filter, we can tune the algorithm by selecting A\
such that [ matches the expected range of piston er-
rors for a given situation. These different coherence
lengths define different modes of broadband phasing.
We show below that the accuracy of a given mode is
roughly proportional to the coherence length. Fur-
thermore, for our standard 11-step sequences, an
edge will be measured successfully (and the corre-
sponding segment captured) if its phase lies any-
where within =5 steps of the nominal position.
Thus the capture range also is proportional to the
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Fig. 7. Typical curves of coherence parameter versus edge posi-
tion for a filter with a coherence length of 40 pm (AN = 10 nm) (top
panel) and for a filter with a coherence length of 1.2 pm (AN = 200
nm) (bottom panel). The top panel corresponds to the particular
sequence of subimages shown in Fig. 5.

coherence length. This means that we can cascade
the various broadband phasing modes by choosing
the capture range of the n + 1st mode to be equal to
the accuracy of the nth mode. As a result the broad-
band phasing scheme converges rapidly, with the to-
tal time required increasing only as the log of the
initial piston uncertainty.

In addition to the AN = 10-nm filter, we use band-
widths of 30 and 100 nm, or we run unfiltered in
which case the effective bandwidth is approximately
200nm. The central wavelengths are in the range of
850-900 nm, except for the unfiltered case in which
the effective wavelength is approximately 700 nm.
When we run unfiltered, we choose stars of a consis-
tent spectral type (KO to K5) to minimize variations
in the effective wavelength. The corresponding co-
herence lengths are [ = 40, 12, 3.8, and 1.2 pm. As
noted in Section 1, the capture range of =30 um that
is associated with the /[ = 40-pm filter completely
eliminates the need for mechanically prephasing the
segments with a hand-held spherometer, as would
have been necessary with the narrow-band algo-
rithm. Indeed, no spherometry was ever done on
Keck 2 before successfully phasing the segments.

We refer to the four phasing modes, from least
accurate to most accurate (or largest to smallest filter
coherence length), as phasing 1000, phasing 300,
phasing 100, and phasing 30, respectively, in which
the numbers represent (in slightly pessimistic terms)
the repeatability of the mode in nanometers, as de-
termined below. The parameters and properties of
the various modes are summarized in Table 1. Col-
umn 1 gives the mode name (e.g., phasing 1000).
Columns 2, 3, and 4 give the filter central wave-
length, bandwidth, and coherence length, respec-
tively. Columns 5 and 6 give the step size and
capture range for the mode. For completeness, col-
umn 7 gives the typical V magnitude of the stars used
in the mode. Note that the nominal star brightness
decreases as the filter bandwidth increases. This is
simply a matter of convenience to keep the count
rates and integration times roughly constant in all
operational modes.

At this point we want to quantify the errors intro-
duced by fitting the coherence function of Fig. 6 to a
Gaussian. We first determined the width (o) of the
Gaussian approximation by numerically generating
coherence curves that are sufficiently dense with the
points to sample adequately the high-frequency
structure shown in the figure. We then fitted these
to a Gaussian, evaluating the width by the technique
of least-squares (or x?) parameter estimation.’® We
repeated this for the four different coherence lengths,
corresponding to the four different modes. The re-
sults are shown in Table 2 in which the mode name is
given in column 1 and the theoretical value of o, in
column 5. Note that o, scales with (and is approxi-
mately 30% of) the coherence length. We then ran
a series of Monte Carlo simulations, one for each
phasing mode, in which an edge height was chosen
randomly, and then 11 diffraction patterns, corre-
sponding to the 11 measurement steps of the broad-
band algorithm, were generated numerically. For
the simulations to be realistic, the random edge
heights for each mode were drawn from a Gaussian
probability distribution whose width was roughly the
same size as that of the expected distribution of the
starting point edge heights for that mode. (The final
results, however, are only weakly dependent on the
starting point.) The rms values of these starting
edge heights are given in column 2 of Table 2. We
calculated the edge height by curve fitting (using the
above-determined value of o, to obtain the step
height corresponding to the maximum of the Gauss-

Table 1. Broadband Phasing Parameters
Wavelength Bandwidth Coherence Length Step Size Capture Range Star Magnitude
Mode (nm) (nm) (um) (nm) (pm) 1
Phasing 1000 891 10 40 6 +30 4
Phasing 300 852 30 12 2 +10 5
Phasing 100 870 100 3.8 0.6 +3 6
Phasing 30 700 200 1.2 0.2 +1 7
(eff) (eff)
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Table 2. Comparison of Theoretical and Actual Broadband Phasing Modes

Number of Trials Gaussian Width Final Piston Error
Initial
Phasing Piston Error Theoretical Experimental Theoretical Experimental
Mode (nm) Theoretical Experimental (pm) (pm) (nm) (nm)
Phasing 1000 10,000 1000 12 13.1 14.1 791 741 = 95
Phasing 300 3000 1000 2 4.02 4.40 212 213 = 61
Phasing 100 1000 1000 26 1.25 1.40 42 82=*5
Phasing 30 300 1000 17 0.30 0.40 22 28 +3

ian. The difference between the calculated edge
height and the true value used in the simulation is
the edge height measurement error. For each mode,
the process was repeated 1000 times to obtain good
statistics, and the rms edge measurement errors
(over these 1000 trials) were determined. We then
converted these edge height measurement errors to
rms piston errors by multiplying by a factor of 0.686.
(This latter factor, which was determined numeri-
cally, is less than unity because the 36 segment pis-
tons are overconstrained by the 78 edge height
measurements.) The rms piston errors from the
Monte Carlo are given in column 7 of Table 2.
Although the performance of the broadband algo-
rithm is discussed in some detail in Section 8, here we
give a brief comparison of the performance results of
the Monte Carlo and the actual algorithm. There
were 57 occasions between June 1995 and January
1997 when we obtained a direct measure of the re-
peatability of the algorithm, either because one mode
was followed directly by a more accurate mode or
because one mode was run twice in a row. (When
one mode is followed by a more accurate one, the rms
phasing command determined by the second mode is
approximately equal to the repeatability of the first
mode.) The number of repeatability measurements
made with each mode is given in column 4 of Table 2.
The real measurements were made in the same
manner as were the numerical simulations. Thatis,
the coherence parameter was measured for each edge
at 11 discrete points, and we determined the edge
height by finding the height that maximized the
Gaussian approximation to the coherence parameter.
Representative curves of the coherence parameter
versus the edge position are shown for the modes
corresponding to the longest (I = 40-pm) and shortest
(I = 1.2-pm) coherence lengths in the top and bottom
panels of Fig. 7. We did not use the theoretical value
of the o, of the Gaussian; rather we determined it by
curve fitting to the empirical data. The empirical
values of ¢, are given in column 6 of Table 2. We
attribute the (generally small) differences between
the theoretical and empirical values of o, to differ-
ences between the actual and modeled filter band-
passes. (These differences tend to increase with
increasing bandwidth.) Finally, the 78 edge height
measurements were converted to 36 piston com-
mands by means of the singular value decomposition
technique, as described below. The empirical re-
peatabilities of the various modes of the algorithm
are given in column 8 of Table 2. Note that the

repeatabilities generally agree quite well with the
theoretical predictions of accuracy for each mode.
This means that our principal source of error is well
understood—it is a direct consequence of the Gauss-
ian approximation. The only exception is the second
most accurate mode (phasing 100), in which the er-
rors are almost a factor of 2 larger than expected.
This may result from the skewed bandpass of this
particular filter, but in any case it is not a serious
problem because, as long as all modes converge, it is
ultimately the accuracy of the most accurate algo-
rithm that counts. Overall, we believe that the good
agreement between both the theoretical and the em-
pirical curve widths, and—more important—
between the theoretical and empirical accuracies,
constitutes a strong validation of the broadband ap-
proach.

After the 78 distinct edge heights are determined,
they are tested for adequate signal (the amplitude of
the curves in Fig. 7); this typically results in the
rejection of only a few (<3) edges. We believe that
the most common cause of inadequate signal is aber-
rations in the segments (see Section 8); these produce
local differential tilt errors between the two segments
that tend to reduce the signal.l” The six edges that
lie directly underneath the secondary mirror support
structure also tend to have a lower signal, presum-
ably from the competing diffraction effects of that
structure. (These should not be confused with the
six edges that lie directly underneath the secondary
baffle, which, as noted above, are completely ob-
scured.) Edges are also missed if they are beyond
the capture range of the particular algorithm, al-
though this usually occurs only in the least accurate
mode. In the following discussion we assume for
simplicity that all 78 edges have been measured suc-
cessfully.

The 78 measured edge steps 3, are related to the
desired 36 segment piston errors p; by a system of
linear equations of the form

Dijy —Piey=9; J=1,...,78, (19)
where i(j) and i'(j) identify the segments associated
with the jth edge. Because the absolute (average)
phase of the mirror is not of interest, it makes sense
to add a constraint to keep it constant, lest the ac-
tuators exceed their range:

Spi=0; i=1,...

, 36. (20)
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Equations (19) and (20), which apply to both the
broadband and the narrow-band algorithms, consti-
tute a simple linear system of 79 equations in 36
unknowns (p;). The technique of singular value de-
composition provides a powerful, robust, and easily
implemented method for solving systems of this type
by constructing the pseudoinverse of the matrix
(here, 79 rows by 36 columns) that defines the linear
system. For a discussion as well as the actual code
(which we use essentially without modification), see
Press et al.18

As is generally the case with overdetermined sys-
tems of equations, the solution—here a 36-element
vector whose negative is the desired piston
correction—will not exactly satisfy the original sys-
tem of equations [with the exception of Eq. (20),
which can always be satisfied exactly]. Therefore
we can define the residual to the fit for the jth edge,
or more succinctly the jth edge residual, as

A% =8 — [piy* — Pry*); 2D
where p; ;,* and p;.(;* represent the best-fit value of
the pistons. There are many potential contributors
to the edge residual, including segment aberrations,
tilt errors in the segments from imperfect tip—tilt
alignment prior to phasing, and seeing. The rms
edge residual is a useful figure of merit describing the
quality of the fit, and we make use of this below.

Note that, strictly speaking, what we accomplish
by the above singular value decomposition is to min-
imize the edge residual (in a rms sense). If the seg-
ments are perfect, this is the same as achieving the
minimum piston error, but if the segments are not
perfect, the singular value decomposition (edge-
residual-minimizing) solution will differ somewhat
from the minimum-piston solution. (With an imper-
fect segment, determination of the segment phase
would involve averaging over the surface of the seg-
ment.) The rms edge residual itself provides an es-
timate of this discrepancy. As we show below,
although the repeatability of the broadband algo-
rithm is of the order of 30 nm, the accuracy may be
worse by a factor of 2 to 3.

Once the desired 36 piston changes are deter-
mined, they are communicated to the telescope’s
ACS. Then we move on to a more accurate mode, or
(in the case of the most accurate mode) we repeat the
process, to verify the measurements.

As a check we also generated empirical templates
instead of the numerically generated ones. That is,
we deliberately stepped various segments of the tele-
scope through the same relative phases as are repre-
sented in the set of theoretical templates and
recorded the corresponding images. We can do this
because the telescope ACS is calibrated relatively,
though not absolutely (that is, the ACS knows what a
micrometer is, but it does not know where the seg-
ments are in phase). We determined the phases of
the empirical templates by comparing each one to its
own reflection about a line parallel to the interseg-
ment edge. The resulting empirical templates were
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then substituted for the numerically generated ones,
and several phasing data sets that had been stored on
disk were reanalyzed by correlating against the em-
pirical, as opposed to theoretical, templates. The
phasing commands generated from the empirical
templates were statistically indistinguishable from
those generated from the theoretical ones. This con-
stitutes a strong validation of the overall method; it
also shows that the degradation of the images be-
cause of seeing effects associated with a/r, ~ 0.4 are
unimportant because the empirical templates include
seeing effects but the numerical ones donot. In view
of the fact that the results are indistinguishable, we
use only theoretical templates because we can modify
them easily for different wavelength or pixel size on
the detector, without having to take telescope time to
prepare new empirical templates.

7. Systematic Effect in Broadband Phasing:
Ring Mode

As noted above, the narrow-band phasing algorithm
suffers from a problem that limits its accuracy to ~30
nm instead of the expected 10 nm. However, this is
still sufficiently accurate to check the broadband
phasing algorithm. For example, in our early expe-
rience with the phasing-100 mode, the results consis-
tently converged as expected to a rms piston
command of <100 nm. Yet when this was followed
immediately by a measurement with the narrow-
band phasing algorithm, the mirror consistently
showed a systematic piston error of almost 300 nm.
In addition, this configuration of the mirror possessed
a high degree of symmetry—specifically the ring
mode—in which the outer rings of the segments are
systematically lower than the inner rings. The size
of the piston error in the ring mode is roughly pro-
portional to the distance of the ring from the optical
axis. An example of the ring mode is shown in Fig.
8.

It has become clear subsequently that the ring-
mode offset is caused by dispersion in the prisms
inside the phasing camera, which closely simulates
the blurring caused by out-of-phase segments. The
effect is independent of the step size used in the
broadband phasing algorithm and also (perhaps
counterintuitively for a dispersion-dependent effect)
is independent of the filter bandwidth. The long-
term stability of the effect, its symmetry (pure ring
mode), its sign (outer segments are low), and its ap-
proximate magnitude (300-nm rms) are all explained
in terms of the following analysis. The narrow-band
phasing algorithm, on the other hand, is not affected
by dispersion to the first order. [Itis easy to see that
narrow-band phasing is not subject to the ring-mode
or dispersion bias, because all the relevant equations
are independent of A\, but we also verified this em-
pirically by checking the phase of the reference
beams. We obtain a phase error of 2 nm (rms); this
includes all systematic and random effects arising
from within the camera (such as dispersion) and thus
rules out ring mode at this level. ]



Fig. 8. Uncorrected ring mode in the primary mirror. The ring
mode—normally corrected to a high degree in software—is a sys-
tematic effect caused by dispersion in the phasing camera optics.
The edge height measurements are indicated by line segments
drawn perpendicular to the intersegment edges. The length of
the line segment is proportional to the edge height; the line is
drawn on the lower mirror segment. The ring-mode component
here corresponds to a rms edge height of 273 nm. Note that the
outer mirror segments are systematically low with respect to the
inner segments.

In narrow-band phasing, the signal is the phase ¢,
which is proportional to the edge step height 5:

S
b=2 N cycles. (22)

For broadband phasing, the signal is the phase dis-
persion with wavelength:

23 AN

Ap ==, (23)

where A\ is the filter bandwidth.

Consider two segments that are in phase and that
produce the usual circular Airy diffraction pattern in
the focal plane, centered at the origin. As the upper
segment is slowly pistoned out of the page, the dif-
fraction pattern will appear to shift down the page,
but the shorter wavelength components will shift
faster, leading to a dispersed, blue-to-the-bottom sub-
image. Note that the sign of the effect (blue to the
bottom) does not change rapidly with step height: It
is constant over a range of order A.

True (material) dispersion in the prisms—for those
prisms whose direction of deviation is perpendicular
to the corresponding intersegment edge—will closely
mimic the above effect, i.e., it will produce a dispersed
subimage with the dispersion either parallel or anti-
parallel to the above direction of phase dispersion.
This is the essence of the ring-mode problem: The
broadband phasing algorithm seeks to minimize the

overall dispersion without regard to whether it is
phase dispersion or prism dispersion (because it can-
not tell the difference). The algorithm will therefore
find a solution in which the phase dispersion is non-
zero (and so the mirror is out of phase) so as to cancel
out the permanent prism dispersion.

Tracing through the optical system (and noting
that the beams exiting the prisms cross in front of the
focal plane), we find that if the outer ring of segments
is higher than the inner rings, the phase dispersion
will produce a subimage that is bluer on the outer
edge and redder on the inner edge. If the outer ring
is low, the effect is reversed, and the subimage is
bluer on the inner edge and redder on the outer edge.
Prism dispersion, on the other hand, will always pro-
duce a subimage that is bluer on the outer edge and
redder on the inner edge. Thus the broadband phas-
ing algorithm will try to cancel out the prism disper-
sion with a phase dispersion of the opposite sign; i.e.,
it will drive the outer ring low, as observed.

To estimate the magnitude of the effect, we note
that the subimage location in the focal plane is given
by

x=f(n—1)8, (24)

where f'is the focal length of the objective lens (locat-
ed after the prisms), n is the index of refraction of the
prism, and 6 is the mechanical angle of the prism (not
the deviation angle). This produces a variation of
the subimage location with wavelength:

d
szﬂ)d—’;m\.

The spread in the image that is due to the prism
dispersion is small compared with the image width
\/b, where b = 596 pm is the mask subaperture
diameter at the camera (at a magnification of 1/200),
not at the primary mirror. To be precise, consider

the dimensionless ratio B of image dispersion to im-
age width:

(25)

dn A
B=0b —

N (26)

The rms prism angle is 6 = 189 arc min, the disper-
sion dn/d\ of the fused-silica prisms is —0.0148/pm,
and the fractional bandwidths are in the range of
0.01-0.1; this yields B in the range of 0.005-0.05.

The prism dispersion of the subimage in Eq. (25)
can be mistaken for the phase dispersion of Eq. (23).
Because the functional forms of the respective diffrac-
tion patterns for prism dispersion and for phase dis-
persion are not the same, one might hope that the
broadband algorithm can somehow tell the differ-
ence, but that is not the case. Because the prism
dispersion is small in the sense B << 1, the precise
functional form is immaterial; it is virtually inevita-
ble that prism dispersion will cause a first-order (in B)
phase shift. We caution, however, that because B is
small it does not necessarily imply that the resultant
phase shift is small in the sense that § << .
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Before we calculate the size of the dispersion-
induced phase shift, which we do both empirically
and numerically, we first characterize it in terms of a
universal dimensionless constant, which—to a large
extent—is independent of the specific parameters of
our particular system. Because A¢ and B are both
dimensionless and both proportional to A\, we can
write

Ad = kB, 27

where « is a numerical factor that we expect (but do
not assume) to be of order unity. The apparent rms
step height associated with the prism dispersion is
then

= —1 bG)\dj = —211 (28)
= 2K N K nm,

where we used the rms prism angle and other values
of parameters cited above.

We calculated k numerically by generating diffrac-
tion patterns by means of Eq. (15), but shifting them
in the focal plane using Eq. (25), for a distribution of
wavelengths with AN = 100 nm, A = 870 nm, (the
phasing-100 values), and other values of the param-
eters appropriate to our system. This calculation
was repeated for ten particular values of the (true)
step heights near each of nine nominal values of the
step height: +0.4, =0.3, =0.2, £0.1, and 0 pm, ex-
cept that we used 100 particular values of the step
height near the nominal value of zero for improved
statistics. We then extracted the apparent step
height from these artificial images by means of the
usual coherence analysis and calculated the differ-
ence between the inferred or apparent step height
and the true step height; this difference is the
dispersion-induced phase shift. We found 3., =
295 + 4 nm, which is equivalent to k = 1.40 * 0.02.
As expected, this difference is independent of the true
phase and (also as expected) k is of order unity.

We also determined k empirically by producing a
ring mode in the primary mirror with the broadband
phasing-100 algorithm and then determining the size
of the ring-mode component (parameterized as the
rms edge height) by analyzing this configuration us-
ing the dispersion-independent narrow-band algo-
rithm. The results of this analysis are shown in Fig.
8. The size of the ring-mode component produced in
this way is 273 nm, equivalent to k = 1.29, or 8%
smaller than the numerically determined value.
This 8% (or 22-nm) discrepancy may be due to an-
other small source of dispersion in the system or it
may be related to the non-Gaussian bandpass of the
real filter; in any case, we use the empirical value for
the actual corrections.

We now routinely correct the broadband results for
the ring mode using the empirically determined value
of the dispersion correction—a fixed bias that is re-
moved from each intersegment edge measurement
before the singular value decomposition. The cor-
rection is the most uncertain for phasing 30 because
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Fig. 9. Surface of the Keck 2 primary mirror before and after
phasing. These data represent the first time the procedure was
run on this telescope.

the wavelength for this mode is the least well defined,
but even for this mode we find (by testing phasing 30
against the dispersion-independent narrow-band
phasing) that the ring-mode contribution to the rms
piston error is only =5 nm (after correction).

8. Performance of Broadband Phasing

We already discussed the average performance of the
broadband phasing algorithm when we compared the
actual and Monte Carlo results in Section 6. How-
ever, it is also instructive to present the unedited
results from the first two times that the full phasing
procedure was run on Keck 2. The surface of the
primary mirror before and after the first complete
Keck 2 phasing run is shown in Fig. 9. Details of the
first two phasing runs are given in Table 3. Column
1 gives the date. Column 2 gives the mode, i.e.,
phasing 1000, phasing 300. Column 3 gives the
number of edges with adequate signal-to-noise ratio.
Column 4 gives the rms piston move executed at the
end of a given procedure. Note that the repeatabil-
ity of the method in a given line is therefore approx-
imately equal to the rms piston move executed in the
following line. Column 5 gives the edge residual,
i.e., the average (rms) part of the physical step height
that cannot be removed by pure pistoning of the seg-
ments. Note that executing the first three cycles of
the phasing procedure improved the rms piston error
by approximately 2 orders of magnitude on both oc-
casions. (The fourth cycle was executed to check the
third cycle.) Between the March and June 1996
runs, 21 of the 36 segment figures were adjusted by
means of leaf springs or warping harnesses that are
attached to the segment support structures. These
adjustments typically reduced the segment surface
errors from 140 to 40 nm (rms).’® The improved
segment figures manifest themselves in two ways in
Table 3. Fewer edges are lost to inadequate signal-



Table 3. Broadband Phasing Performance

rms
Measured Piston Residual
Date Mode Edges (pum) (pm)
First Keck 2 attempt
12 March 1996 Phasing 1000 71 9.469 0.607
14 March 1996 Phasing 300 77 1.384 0.247
14 March 1996 Phasing 100 71 0.147 0.222
14 March 1996 Phasing 100 70 0.140 0.219
Second Keck 2 attempt
14 June 1996 Phasing 1000 78 7.398 0.795
14 June 1996 Phasing 100 77 0.501 0.109
14 June 1996 Phasing 30 74 0.052 0.102
14 June 1996 Phasing 30 74 0.025 0.099

to-noise ratio, and the edge residual is reduced by a
factor of 2, from 220 to 100 nm, in the more accurate
procedures. (The residuals are dominated by mea-
surement errors in the less accurate procedures.)
Additional adjustment of segments subsequent to
June 1996 reduced the Keck 2 edge residual by an
additional 30% to 68 nm, or somewhat less than the
current 85-nm residual on Keck 1 (where some recent
procedural improvements to the segment adjust-
ments have not yet been incorporated).

The fact that the edge residual on Keck 2 went
down dramatically as the segment figures were im-
proved constitutes strong, though circumstantial, ev-
idence that the residuals are dominated by segment
aberrations. However, is it possible that residual
tilt errors left over from segment tip-tilt alignment
might be contributing significantly to this residual?
To answer this question quantitatively, we examined
the (78-element) edge residual vector for a series of 35
phasing-30 runs spanning four months (29 November
1996 to 23 March 1997) on Keck 2, where the seg-
ments were restacked between each run. Figure 10
shows the average edge residual versus edge number,
where the error bars represent the rms variation on
the residual from run to run. The latter is the vari-
able part and is attributable to stacking and mea-
surement errors; the fixed part is attributable to
segment aberrations. We expect the fixed and vari-
able parts to be uncorrelated and therefore to add in
quadrature. The contribution that is due to stack-
ing and measurement errors is 33 nm, and the con-
tribution that is due to segment aberrations is 59 nm.
The latter is clearly dominant. Furthermore, the
59-nm estimate is consistent with the expected seg-
ment aberrations: The rms edge height residual
should be (and is) within a factor of order unity of the
40-nm segment surface errors. We hope to correlate
the segment aberrations with specific edge residuals
in the future.

The time required to execute the broadband phas-
ing procedure is dominated by exposure time and
CCD readout time. Each exposure is typically 45 s
(to average out the effects of atmospheric turbulence),
and each CCD readout takes another 11 s. Compu-
tation time (for the cross correlation and singular
value decomposition) is negligible compared with the

exposure and the readout times. The setup time—
largely for pupil registration—is approximately 10
min. Once the initial pupil registration is set, the
procedure is automatic; the camera automatically ad-
justs the pointing and keeps the pupil registered
without the need for operator intervention. The to-
tal time for an 11-exposure cycle is therefore approx-
imately 25—30 min. (This does not count the 15 min
required for the prior tip—tilt adjustment of the seg-
ments.)

During normal operations the phasing procedure is
run approximately once a month. Phasing 1000 is
typically used only from a cold start—when segments
are installed or exchanged. Phasing 300 is rarely
used because the capture range of phasing 100 is
comfortably larger than the accuracy of phasing
1000. Ifno segments are exchanged, the 3-pm cap-
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Fig. 10. Residual edge heights (after phasing) for the 78 inter-
segment edges for a series of 35 phasing-30 runs on Keck 2. Error
bars represent the rms variation from run to run (not the error on
the mean). The fact that the variations are relatively small shows
that random errors in tip-tilt alignment are not the major contrib-
utor to the residuals, which are believed to arise from aberrations
in the segments themselves.
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ture range of phasing 100 is more than sufficient,
given the drift rate of the telescope ACS. Phasing 30
is then used to reduce the piston errors further.

We are currently studying the stability of the ACS
in the context of phasing. Thus far the data are
quite limited, but for a few tests that were on time
scales of 10-30 days, during which there were no
segment exchanges or other disruptions of the ACS,
the required piston corrections were less than 80 nm.
Therefore it is likely that in the future even the 1-pm
capture range of phasing 30 will prove sufficient.

9. Conclusions

The broadband phasing algorithm repeatedly and re-
liably puts the telescope into the same configuration
with regard to segment phase to within 100 nm or
less. The evidence for this is the following:

¢ Assummarized in Tables 2 and 3, the algorithm
converges rapidly, with an ultimate repeatability of
approximately 30 nm. Indeed, after some initial de-
velopment work on Keck 1, the algorithm has never
failed to converge on Keck 2.

¢ On a few tests spanning intervals from 10 to 30
days, the phasing solution was shown to be stable at
a level of 80 nm or more.

¢ The edge residuals are stable at a level of 33 nm
over time scales of many months (see Fig. 10).

We believe further that the configuration to which
we consistently converge is the correct or optimal
configuration with regard to phase (again to within
the same 100 nm). The evidence for this is the fol-
lowing:

e Detailed Monte Carlo calculations with the
broadband algorithm consistently converge to the
correct solution, as discussed in Section 6. There
are a number of successful consistency checks be-
tween the Monte Carlo and the actual algorithm.

¢ The phasing solution is essentially independent
of whether we use empirical or theoretical templates.

¢ The broadband and narrow-band phasing solu-
tions are consistent. In June 1996 we ran (in order)
narrow-band phasing, phasing 30, narrow-band
phasing, phasing 30 and narrow-band phasing, and
we did not send phasing commands between the five
runs. The rms piston difference between the three
narrow-band phasing runs and the two phasing-30
runs was 53 nm, or only a little larger than the 43 nm
expected on the basis of the quadrature sum of the
narrow-band phasing repeatability (33 nm) and the
phasing-30 repeatability (28 nm). This is true de-
spite the fact that the two algorithms exploit substan-
tially different diffraction effects and largely
independent software.

As noted in the discussion of the singular value
decomposition in Section 6, the fact that the edge
height residual (68—85 nm) is significantly larger
than the repeatability of the algorithm (30 nm)
means that the edge-height-minimizing configura-
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tion into which we put the primary mirror is not
exactly the same as the minimum-piston-error con-
dition. The edge height residual itself provides an
estimate of the difference between these two config-
urations. It is not necessarily clear which is the
preferred configuration (although we currently do not
have a choice). We hope that further reductions in
the segment aberrations in the future will render this
point moot.

In summary, the Keck phasing camera, when used
with the broadband algorithm, can phase the tele-
scope segments to approximately 30-nm rms piston
error with light from moderately bright stars (V = 4
to 7). The residuals to the fit of approximately 68
nm (Keck 2) to 85 nm (Keck 1) appear to be domi-
nated by aberrations in the segments themselves.
The time required to execute the algorithm grows
only logarithmically with the initial piston uncer-
tainty. Phase errors of 30 pum can be reduced by 3
orders of magnitude in approximately 2 h; phase er-
rors of 1 pm can be reduced in as little as 45 min.
The phasing procedure requires only modest setup by
the operator (principally telescope pointing and pupil
registration), and then little or no further interven-
tion is necessary. The algorithm is robust and, after
considerable development on Keck 1, it worked the
first time (and every subsequent time) on Keck 2.

Current phasing performance is sufficient for
diffraction-limited imaging in the infrared, but may
need to be improved for speckle and adaptive optics
applications.

Appendix A: Resolution of the Absolute Phase
Ambiguity in Narrow-Band Phasing

Here we deal with the issue of the half-wave ambi-
guities associated with narrow-band phasing (a prob-
lem that does not arise in broadband phasing).
These ambiguities can be eliminated when the
narrow-band measurements are repeated in two nar-
row filters of different wavelengths. The two result-
ing phases are then reduced to a single step height by
a straightforward x® minimization. To be specific,
we define x%(3), where 3 is the step height, by

el oo
frac ) &; +m,
> L . (AD

i g;

X*(3) =

Here, \; is the wavelength of the ith filter, frac rep-
resents the fractional part of its argument, ¢, is the
phase in cycles measured in the ith filter (0 = ¢, = 1),
m; = —1, 0, or +1 (chosen so as to minimize x?), and
0; is the uncertainty associated with ¢;. The integer
m; is needed to deal with the wrap around of the
phase. For example, if frac(23/);) = 0.01 and ¢; =
0.98, then m; = +1. (Although we use only two
filters, the above equation is valid for larger numbers
of filters.) The best-fit value of the step height is the
one that minimizes 2. (See Press et al.16 for a dis-
cussion of parameter estimation by x* minimization,
including error analysis and sample routines.) How



to choose these two wavelengths is a nontrivial opti-
mization problem, but a full discussion would take us
too far afield here. For our purposes we note that if
the wavelengths are too close together, then occasion-
ally the x? minimizing solution will differ from the
true value by half of the mean wavelength (\; +
\s)/4, as is clear from a consideration of the limiting
case \; = \y. If the wavelengths are too far apart,
occasionally the x? minimizing solution will be in
error by

Aids

Np =
12 2|)\1 - )\2|

(A2)

To see this, suppose that we have a measure of the
phase ¢; and ¢, in each of two different filters, of
wavelength A; and \,, where we take \;{ = \,, and the

phase is measured in cycles as above. The phases
are related to the step height & by
8 =(ny + dbN\/2, (A3)
d = (ny + d2)hy/2, (A4)
where the integers n, and n, are unknown. Solving
for &; and ¢, and subtracting, we find
3 = Npa(dy — by + 1y — ny) (A5)

with A\, as in Eq. (A2). Thus the step height mea-
surement will be uncertain by an integer multiple of
Mo If \; and \, are sufficiently close together, A\,
will be larger than the initial uncertainty in the step
height and the ambiguity can be resolved; clearly the
problems arise at the other extreme when the two
wavelengths are far apart.

Note that if the problem is the former one—errors
of half of the mean wavelength—the addition of an-
other measurement in a filter with a wavelength in
between the first two will generally not be of much
help, but such additional measurements will help the
latter problem. Unfortunately, the wavelengths are
generally forced closer together than one might hope
by the limited bandwidth of the detector or by other
optical design considerations. In our case the wave-
lengths are 651 and 852 nm, and the former effect
(errors of 376 nm) tend to be more of a problem than
the latter (errors of 1380 nm). In a typical run, ap-
proximately two of the 78 edge solutions converge to
the wrong value. We suspect that these errors may
be triggered when the relative positions of the seg-
ments are not held absolutely stable between mea-
surements in the two filters. This is the limiting
factor for the convergence of the narrow-band meth-
od: The typical rms piston changes by approxi-
mately 40 nm between successive runs. This is
consistent with Monte Carlo simulations having two
errors of half of the mean wavelength or 376 nm.
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