Subaru/SWIMS Views of Low-Luminosity Quasars at z=6-7 — BH mass, BLR metallicity/outflow, co-evolution etc. —

Masafusa Onoue (MPIA Heidelberg) on behalf of the SHELLQs collaboration

2020/07/27 SWIMS on Subaru Workshop

Credit: Y.Matsuoka

HSC

Super Massive Black Holes

SMBH Early Growth & Chemical Evolution

10⁻¹⁶

0

Flux density, F_{λ} (W m⁻² μ m⁻¹)

- $M_{BH} > 10^9 M_{sun}$ SMBHs exist at z > 6(e.g., Wu+15, Banados+18). Mostly Eddington accretion
 - Stringent constraints on the seed BH formation scenario (cf. Inayoshi+20)

- Rest-UV spectrum seems unchanged up to z=7.5 (t_{univ}~0.7Gyr; e.g., Onoue+20)
 - No metallicity evolution in broad-line-region gas ($Z_{BLR} \sim 5Z_{sun}$; e.g., Nagao+06)
 - Rapid star formation of the quasar hosts?

SMBH Early Growth & Chemical Evolution

- $M_{BH} > 10^9 M_{sun}$ SMBHs exist at z > 6(e.g., Wu+15, Banados+18). Mostly Eddington accretion
 - Stringent constraints on the seed BH formation scenario (cf. Inayoshi+20)

2020/07/27 SWIMS on Subaru Workshop

We have only observed most luminous quasars!! A less-biased view of early SMBH growth -> faint quasars!

- Rest-UV spectrum seems unchanged up to z=7.5 (t_{univ}~0.7Gyr; e.g., Onoue+20)
 - No metallicity evolution in broad-line-region gas (Z_{BLR}~5Z_{sun}; e.g., Nagao+06)
 - Rapid star formation of the quasar hosts?

Our Project:Searching for z=6-7 low-luminosity quasars

z=6-7 Quasar Search with HSC-SSP

• Known quasars at z>5.8

• Composite spectrum (Matsuoka, MO+19b)

NIR follow-up

• VLT/XShooter & Gemini/GNIRS spectra (MO+19)

2020/07/27 SWIMS on Subaru Workshop

• MgII spectra at K-band (XShooter, GNIRS, MOIRCS)

NIR spectra are essential to evaluate MBH and BLR properties

NIR follow-up

 VLT/XShooter & Gemini/GNIRS spectra (MO+19) • CIV spectra CIV Hell Lvα: Nv SilV 11WWW.WMWA -Hyman Marken LudumeLudume J1205-0000 J0859+0022 O MANNAM MUN 7 15 A Ч 10 CIV broad absorption line (BAL) S 2 Е 3 С erg 10 -18 $^{-1}$] $F_{\lambda}[10^{-1}]$ Ř - MANA MANT WIL _____ S -2 1.101.25 1.20 1.30 1.05 1.101.20 1.05 1.101.15 1.15 G Observed Wavelength [μ m] Observed Wavelength [μ m] erg MARAN 7V1:V1 $F_{\lambda} [10^{-18}]$ J1208-0200 J2239+0207 . 5 CIII À '_ഗ 4 A MANN MARCHANNER tower with the week E 3 erg 2 18 $F_{\lambda}[10]$ wat Marin VINU 1.15 1.20 1.15 1.20 1.05 1.05 1.10 1.05 1.10 1.10Observed Wavelength [μ m] Observed Wavelength [μ m] 1.5 1.0 Observed Waveler **Broad / Narrow absorption is common at high-z?**

2020/07/27 SWIMS on Subaru Workshop

MgII spectra at K-band (XShooter, GNIRS, MOIRCS)

NIR follow-up

 VLT/XShooter & Gemini/GNIRS spectra (MO+19) • CIV spectra SilV CIV Hell $lv\alpha$: Nv11 WWW. WWW -Human Marken LudumeLudume O MANNAM MUN 7 15 A 10 CIV broad absorption line (BAL) S 2 E 3 erg 10 -18 A^{-1}] $F_{\lambda}[10^{-1}]$ _____ S -2 1.101.15 1.20 G **Observed Wave** erg Martin 7V1:V1 $F_{\lambda} [10^{-18}]$. 5 CIII ⊲ '_ഗ 4 MANNA MARCONNER the second s A.M.A.M.A.M. E 3 erg 2 $F_{\lambda}[10]$ wat Marin 1.05 1.10 **Observed Wave** 1.0**Observed Waveler**

2020/07/27 SWIMS on Subaru Workshop

MgII spectra at K-band (XShooter, GNIRS, MOIRCS)

Broad / Narrow absorption is common at high-z?

Quasar nuclear-scale outflows

2020/07/27 SWIMS on Subaru Workshop

in prep.

BLR blueshifts get sharply larger at z>6 (even for low-ionization lines) How are they linked to the SMBH growth and host galaxy evolution?

MBH-Lbol distribution at z>6

2020/07/27 SWIMS on Subaru Workshop

Those SMBHs need > 10^{6} M_{sun} seed BHs assuming continuous accretion at the observed speed

Diverse MBH & Edd ratio distribution found in HSC low-luminosity quasars z>6 sub-Edd SMBHs are likely in quiescent phase even at z>6

Early SMBH-galaxy Co-evolution

ALMA revealed that co-evolution has already been in place at z=6 (with a variety of the FIR properties)

Subaru/SWIMS follow-up

2020/07/27 SWIMS on Subaru

Subaru/SWIMS follow-up

2020/07/27 SWIMS on Subaru Workshop

Increasing our NIR sample is a key for statistical studies (e.g., mass function, BAL fraction)!! **Requiring telescope times:** <u>10 nights</u> (~4hr/target)

Why is Subaru/SWIMS needed?

- The capability of simultaneous NIR spectroscopy is ideal (i.e., more emission lines, better continuum estimate). Spectral resolution of R~1000 is sufficient to detect broad emission lines (FWHM>1000 km s-1)
- NIR follow-up has been our bottleneck (<9hr per target). Since we will propose an ALMA large (PI: T.Izumi), we need a block of observing times in NIR as well to have a sample size of N~30
- Quick NIR follow-ups enable us to provide unique targets to JWST (e.g., super-Eddington SMBHs). #GO cycle-2 due mid 2022
- We want to explore high-z low-luminosity quasars before Rubin, Euclid, and Roman are in operation.
- Ancillary science cases (next slide)

Ancillary Science Cases

- Mode: Subaru/SWIMS spectroscopy (0.9-1.4 & 1.4-2.5um, MOS?)
- **Targets:** z=6-7 low-luminosity quasars (y_{AB}=21-23) from HSC-SSP
- ★ # of targets: ~20, ~10 nights
- **Key science cases:**
 - MgII / CIV-based MBH measurements -> MBH distribution, super-Edd SMBHs
 - Galaxy-SMBH co-evolution (ALMA large in prep.)
 - Quasar BLR metallicity and outflow: SiIV, CIV, CIII], MgII
 - Characteristic quasars (e.g., dust-reddened quasars)
 - Quasar environments

2020/07/27 SWIMS on Subaru Workshop

Summary

Backup slides

+ BLR metallicity indicators: NV, SilV, CIV, Hell (e.g., Maiolino & Mannucci 2019)

Fell/Mgll: "cosmic clock" (cf. Sameshima-san's talk) no Fell/Mgll break up to $t_{univ}=0.7$ Gyr —> prompt iron production by SNe Ia or PISNe?

2020/07/27 SWIMS on Subaru Workshop

Rapid Chemical Enrichment in BLR

The age of the universe is t_{univ}<1Gyr!

+ BLR metallicity indicators: NV, SilV, CIV, Hell (e.g., Maiolino & Mannucci 2019)

Fell/Mgll: "cosmic clock" (cf. Sameshima-san's talk) no Fell/Mgll break up to $t_{univ}=0.7$ Gyr —> prompt iron production by SNe Ia or PISNe?

2020/07/27 SWIMS on Subaru Workshop

Rapid Chemical Enrichment in BLR

Why is the XQR-30 useful for BLR studies?

The XQR-30 sample gives an important benchmark of the mean z=6 BLR metallicity (plus Fell/MgII, blueshifts, etc.) +

Large sample size, high data quality (weak BLR lines can be identified such as <u>NV1240</u> and <u>Hell1640</u>)

+ Rich data sources are/will be available (ALMA: host ISM, MUSE: CGM)

2020/05/26 XQR-30 WP3 all-hands zoom meeting

2020/05/26 XQR-30 WP3 all-hands zoom meeting