Observation of Exoplanet-Atmospheres by SWIMS

Akihiko Fukui

Okayama Astrophysical Observatory, NAOJ Collaborators: Norio Narita (Astrobiology Center/NAOJ), Masahiro Ikoma (Univ. of Tokyo)

2015.9.18

TAO/SWIMS Science WS 2015

@Mitaka (the Institute of Astronomy, University of Tokyo)

1,890 exoplanets have been discovered by several techniques

Kepler revealed new population: super-Earths

- Super-Earths are abundant in our Galaxy
- How they have formed?

Atmosphere as a tracer of planet formation history

- C/O ratio (and water abundance) in planetary atmosphere can be a good tracer of where the planet forms
 - In proto-planetary disks, C/O ratio changes at the snow lines of H_2O , CO_2 , and CO

Transmission spectroscopy

- When a planet transits, a part of the stellar light passes through the planetary atmosphere
- Atmospheric opacity changes with wavelength depending on the atmospheric composition
- \Rightarrow Atmosphere can be observed as a wavelength dependence of transit depth (=(R_p/R_s)²)

Three observational techniques

Multi-band Photometry

- Can probe overall spectral features
- Small-to-mid class telescopes can be used

Low-resolution Spectroscopy

- Can probe Rayleigh slope in optical and molecular features in NIR
- Necessary to use large telescopes

SWIMS

High-resolution Spectroscopy

- Can probe specific atomic and molecular lines
- e.g., Na, K, CO

Theoretical transmission spectrum

Wavelength [μm]

Detections of water in hot Jupiters

- Water (H₂O) have been detected in a number of hot Jupiters, mainly by HST/WFC3
- Many hot Jupiters have C/O ratio < 0.9 (Benneke 2015)

Proving atmosphere of small planets

- Technical merit and demerit
 - Merit: low surface gravity → high atmospheric scale height
 - Demerit: shallow transit depth $(\delta = R_p^2/R_s^2)$
- Requirements
 - Small host stars (M dwarfs)
 - Nearby (bright) stars
- Currently, only one transiting super-Earth (GJ1214b) is known around nearby M dwarfs

Super-Earth GJ1214b

- The most famous super-Earth
 - Discovered in 2009 as the first transiting super-Earth around nearby M dwarf (Charbonneau+ 2009, Nature)
- Early observations showed a flat spectrum
 - Steam dominant or Cloudy?
 - The NIR K_s and optical B bands were in debate

M_{p}	6.6 M _{Earth}
R_p	2.6 R _{Earth}
Period	1.6 days
R_s	0.2 R _{sun}

Our observations with 1.4m IRSF and 8.2m Subaru

NIR J,H,Ks band photometry with 1.4m IRSF

Optical B-band photometry with 8.2m Subaru

Observed Spectrum of GJ1214b

We confirm the flat spectrum over optical and NIR

Intensive NIR Observations of GJ1214b by HST/WFC3

- Kreidberg+ 2014, Nature
- 15 transits were obtained by HST/WFC3
- Still flat even with the marvelous precision
- Possibly covered by a thick cloud layer

All-Sky Transit Survey: TESS (by MIT/NASA)

Ricker et al. (2014)

- TESS is an all-sky survey space telescope to be launched in late
 2017 (mission length: two years)
- TESS will monitor nearby, bright stars (/<13)

 Kepler (/>13)
- TESS will find ~500 super-Earths,
 >100 of which are suitable for atmospheric study

Ground-based followup observations are important from ~2018

Merits of SWIMS

- SWIMS will have a good synergy with TESS
 - TESS: late 2017~ (ecliptic north), late 2018~ (ecliptic south)
 - SWIMS: ~early 2018 (Subaru), late 2018~ (TAO)
- Low absorption by telluric H₂O at TAO site
 - Enables to probe H₂O in exoplanetary atmospheres
- Large FOV offers many targets
 - Simultaneous spectroscopy of bright comp. star(s) is necessary
 - 8.6' FOV (with TAO) is good for J<9 targets

Can be a bridge between MuSCAT and TMT

- A new multi-band camera Muscat
 - Recently developed for the 188cm telescope at OAO (PI:Narita)
 - Can obtain g, r, z band images simultaneously
 - For validation and first characterization of TESS planets

TMT

Can search for biomarkers in habitable planets

OAO 188cm/MuSCAT

Validation and coarse atmospheric survey

TAO/SWIMS

Detailed characterization of super-Earth atmospheres

TMT

Toward atmospheres of habitable planets

Summary

- Super-Earths are abundant in our Galaxy, but their formation mechanism is still an open question
- Atmospheric study of super-Earths is a key to understand their formation histories
- The all-sky transit survey telescope TESS will be launched in late 2017, which will discover >100 super-Earths suitable for atmospheric characterization
- SWIMS has a good synergy with TESS, a good sensitivity to H₂O, and can observe many bright targets
- SWIMS can be a bridge toward the biomarker search with TMT