大気を持たない小天体(彗星核/小惑星/外縁天体)の 熱放射の観測

関口 朋彦(北海道教育大学·旭川校)

◆冥王星の大きさ測定 Before & After New Horizons
◆観測による小天体の大きさ測定と探査機答え合わせ
◆小天体の熱放射
◆ITOKAWA再び
◆小惑星の表面熱物性とはやぶさ2TIR
◆これからの観測

<u> 冥王星のサイズ見積もり:Before & After New Horizons</u>

- Stellar Occultations Charon Mutual Event = 1178 ± 23 km (1994) HST imaging
- $= 1180 \pm 5 \text{ km} (1993)$ Speckle interferometry = 1350~1730 km (1987) $= 1160 \pm 12 \text{ km} (1994)$

New Horizons =1185 km

NASA, ESA, and M. Brown (Caltech)

STScI-PRC06-16b

小惑星のサイズ測定	≧:「赤外線」観測と「探査機」	による"答え合わせ"
探査機	小惑星 (観測:直径)	探査機計測結果
Galileo (1991)	ガスプラ (IRAS:16km)	12 km → -28%
Galileo (1991)	イダ (IRAS: 33km)	28 km → -16%
NEAR (1997)	マチルダ (IRAS: 61km)	58 km → -5%
NEAR (1997)	エロス (UKIRT: 24km)	17 km → -40%
	Eros	Gaspra Ida
サイズ導出に,天	体形状の効果・自転は考	意慮していない
シンプルSTM: ti	raditional Standard T	⁻ hermal Model
	M	athilde

エネルギーバランス

熱放射の観測 中間赤外線観測 25143 Itokawa 10 Observation time: 2004/07/02 Heliocentric distance: 1.035 [AV] predicted flux density [Jy] Geocentric distance : 0.026 [AU] Apparent Y Magnitude: 19.4 [mag.] 中間赤外線 ▶ 熱放射 0.1 0.01 **可**視 ・近赤外 太陽光反射成分 0.001 10 100 wavelength [µm]

チリ ESO La Silla 観測所

ESO 3.6m望遠鏡

Hayabusa 探査機ターゲット Itokawa の熱放射測光

中間赤外観測装置 TIMMI2 Nバンド測光観測 Sekiguchi et al.2003 N・Qバンド測光観測 Mueller, Sekiguchi et al.2005

Itokawaのサイズとアルベドの導出

可視のライトカーブ(連続測光)観測から形状を求める

Kaasaleinen et al. 2003, Kaasaleinen 2005

可視のライトカーブ(連続測光)観測による形状の推定

Kaasaleinen et al. 2003, Kaasaleinen et al. 2005

黄道面に対して

Kaasalainen et al. 2003, Shape model through lightcurve inversion technique

TPM: ThermoPhysical Model of 951 Gaspra

- •回転軸、回転ベクトルと自転周期
- •表層の熱伝導特性(1次元熱伝導、熱慣性、二次元分布)

ESO 3.6m + TIMMI2による多波長, 広位相角, 多数回の中間赤外観測

Mid-Time		Filter	r	Δ			
No	(Day UT)波	Band	[AU]	[AU]	大陽	这 相角 _{ks}
01	2001/Mar/14	05;50	N11.9	1.059232	0.073897	+27.54	Sekiguchi et al. (2003)
02	$2001/\mathrm{Apr}/\mathrm{08}$	09:27	N11.9	0.983221	0.053606	108.33	Delbo (2004)
03	$2001/{\rm Apr}/08$	09:42	N10.4	0.983198	0.053633	108.35	and priv. comm.
04	$2001/{\rm Apr}/08$	10:01	N12.9	0.983169	0.053667	108.37	"
05	$2001/{\rm Apr}/08$	10:18	N8.9	0.983142	0.053698	108.38	
06	$2001/{\rm Apr}/08$	10:34	N11.9	0.983117	0.053728	108.40	.22
07	$2001/{\rm Apr}/09$	09:28	N12.9	0.981024	0.056409	109.93	(22))
08	$2001/{\rm Apr}/09$	09:45	N9.8	0,980999	0.056441	109.95	.32%
09	$2001/{\rm Apr}/09$	10:03	N10.4	0.980972	0.056475	109.96	39
10	$2001/{\rm Apr}/09$	10:18	N11.9	0.980949	0.056504	109.98	39 7
11	$2001/{\rm Apr}/09$	10:32	N11.9	0.980928	0.056530	109.99	"
12	2004/Jul/01	06:03	N1	1.028243	0.020164	-54.63	this work
13	$2004/\mathrm{Jul}/01$	06:19	N1	1.028279	0.020193	-54.56	37
14	$2004/\mathrm{Jul}/01$	06:36	N1	1.028318	0.020224	-54.49	"
15	$2004/\mathrm{Jul}/01$	06:54	N1	1.028359	0.020257	-54.41	**
16	$2004/\mathrm{Jul}/01$	07:16	N2	1.028409	0.020298	-54.31	17
17	2004/Jul/01	07:36	N2	1.028454	0.020335	-54.22	-32
18	2004/Jul/01	07:53	N12.9	1.028492	0.020367	-54.15	(22))
19	2004/Jul/01	08:09	N12.9	1.028529	0.020397	-54.08	32%)
20	2004/Jul/01	08:37	Q1	1.028592	0.020450	-53.95	.327//

Itokawa の ThermoPhysical Model

太陽光入射フラックス

入射光と自転に対する温度分布

Mueller, Sekiguchi et al., A&A, 2005

Time [hours], Start time: 01-Jul-2004 00:03:00 UT

30

Imaging by Hayabusa Spacecraft

http://www.jaxa.jp/press/2005/09/20050914_hayabusa_j.html

JAXA / ISAS

Hayabusa: 540x270x210m

our study :520x270x230m (+/-50) (+/-30) (+/-20)

Mueller and Sekiguchi et al. (2005, A&A)

Itokawa の熱モデルの答え合わせ

入射光と自転に対する温度分布

Mueller, Sekiguchi, Kasalainen, Abe, Hasegawa, 2005

Mueller, Usui, Hasegawa, 2014

熱慣性値 (Γ = √ κρc_P)の導出

Tempel 彗星の彗星核の熱慣性値 \rightarrow 0 ~ 10 [Jm⁻²s^{-0.5}K⁻¹] Groussin et al. 2007

Deep Impact探査機

・レゴリス小惑星 「=10-15 (Mueller et al.1999)

・月 「=39 (Keihm 1984)

•Itokawa
Γ=750
(Mueller, Sekiguchi
et al.2005)

·金属質 「=10000 (Mueller et al.2005)

熱慣性:J m⁻² s^{-0.5} K⁻¹

人類の偉大なる一歩から読み取る月のレゴリス

"That's one small step for a man, one giant leap for mankind. " Neil Alden Armstrong

 ・表面の土砂の空隙率や砂利の粒径を推定 はやぶさ2のTIR (Thermal InfraRed Imager)サ イエンスへ

熱慣性 vs. 表層物理状態

<mark>熱慣性:</mark> Γ [J m ⁻² s- ^{0.5} K ⁻¹]	表層物理状態
~ 10	超高空隙率の微細粒(~80%)?, セレス、火星の砂
~ 50	微細粒: 月レゴリス (粒径 50~100 µm)
100 ~ 200	砂(d~mm): 433Eros
200 ~ 400	砂利 (d ~cm): 25143Itokawa's Muses-Sea Regio
400 ~ 1000	岩片、岩石破片 (d < m): Itokawa's rough terrain
1000 ~ 2000	多孔質岩石
2000 ~	稠密な岩石

はやぶさ2 赤外線カメラ(TIR)の目的

25143 Itokawa	433 Eros	The moon	1 Ceres
$\Gamma = 600$	$\Gamma = 150$	Γ = 50	$\Gamma = 10$
Release 051101-4 ISASUAXA			
Coarse regolith	Finer and thicker	Mature and	Very fine
and boulders	regolith	fine regolith	regolith ??

TIRの仕様緒元

開発コンセプト

- ・小惑星サーモグラフィ:広い温度範囲
- ・非冷却ボロメータ使用:小型軽量化
- ・「あかつき」LIRと同設計:短期開発
- ・積算:M=1枚/60秒×2^m枚(m=0~7)
 N=2ⁿ枚(n=0~7枚)

Table. Specifications of TIR (at EOL)

Mass	3280g
Power	22W
Detector	NEC 320 bolometer (AR coating)
Wavelength	8-12µm
FOV	16° × 12°
IFOV	0.877mrad = 0.05°
Detection range	250-400K
Pixel numbers	344 × 260 (effective 320 x 240)
Temp. resolution	< 0.5K (@350K), < 0.6K (@250K)
Abs. temp accuracy	< 5K (@350K), < 6K (@250K)
Ge Lens F-value	1.4
MTF (@nyquist freq)	>0.3
A/D Conversion	12 bit

TIRによる風景写真(相模原市)

くデジカメン

★天体自転に伴う温度変化と熱慣性

彗星核の温度マッピング: 探査機 Deep impact

120 m/pixel

Groussin et al. 2007

Mini-TAOによる小惑星の熱放射観測

Mueller, Miyata et al. (2013)

多波長

Mini-TAO (7.9, 8.8, 9.7, 10.3, 11.6, 12.5, 18.5 μ m) Herschel (70, 100, 160 um)

SMA (1300-1359 um)

裸の(?) 彗星核の熱放射ライトカーブ

Rotationally Resolved 8 35 Micron *Spitzer Space Telescope* Observations of the Nucleus of Comet 9P/Tempel 1 Lisse et al. (2005)

Spitzer Space Telescope observations of the nucleus of comet 67P/Churyumov-Gerasimenko Lamy et al. (2008)

Spitzer 宇宙望遠鏡による二例のみ

裸の彗星核 (P/2006 HR30): 熱放射ライトカーブ

1) Deep Impact spacecraft, 2) Spitzer-S.T.

あかりの中間赤外線の全天サーベイデータ

小天体のサイズ&アルベド、表面熱物性を知るために

可視光でライトカーブを取って自転を知ろう 赤外線でライトカーブを取って熱放射時間変化を知ろう

Why AKARI-FIS?....TNO low temperature

Surface Temperature of minor bodies

