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Abstract

We revisit the methods to determine the Galactic rotation curve and kinematical distances from radial
velocities and proper motions. We construct ”accuracy diagrams” to show the distributions in the galactic
plane of expected uncertainties in the derived quantities such as rotation velocities and kinematical dis-
tances. We discuss how to optimize the source selection for measurements of kinematical quantities based
on the accuracy diagrams.
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1. Introduction

Rotation curve is the major tool to study the dynam-
ics and structure of the Galaxy (Binney and Merrifield
1998; Sofue and Rubin 2001; Sofue et al. 2009). Once
it is determined, the rotation curve is used to obtain the
distribution of mass in the Galaxy, and map the interstel-
lar matter from kinematical observables. Accuracy of the
obtained results depends not only on the observational
accuracy, but also on the methods as well as on the lo-
cation of observed objects in the galactic disk. However,
accuracy analyses have been not systematically obtained
in the current studies of galactic kinematics.

VLBI measurements of parallaxes and proper motions
of galactic maser sources have opened a new era in the
study of galactic kinematics, particularly in determining
the rotation curve and distances of objects (e.g. Honma
et al. 2007; Reid et al. 2009). VERA has played the es-
sential role, and high accuracy determination of the rota-
tion velocity is now available using trigonometric distance
measurements combining with proper-motion (Honma et
al. 2007).

A more general method to measure the distance, radial
velocity, and proper motion at the same time has been ap-
plied for determining three-dimensional velocity vectors of
maser sources (Oh et al. 2010). These measurements are
expected to provide us with a global rotation curve con-
structed from objects distributed over the galactic disk.
This will improve the accuracy not only of the outer ro-
tation curve, but also of the inner rotation curve, where
the current observations have been obtained mostly from
the tangent point data.

Accordingly, observations of a larger number of objects
distributed in the galactic disk have become possible for
deriving the rotation curve. We remember that the ac-
curacy of derived rotation velocity depends not only on

the intrinsic observing errors, but also on the location of
measured objects.

In this paper, we analyze the behaviors of observable
kinematical quantities such as the radial velocity and
proper motions in the galactic disk. We investigate the de-
pendence of the accuracy of derived rotation velocities on
the galactic positions of the observed sources. The results
would be useful as a guide for optimizing the selection of
objects for determination of the Galactic rotation curve.
The present analyses will be given on the assumption of
circular rotation of the galactic objects. We present the
result only for a fixed set of the galactic constants, R0 = 8
kpc and V0 = 200 km s−1. However, the analysis does not
include systematic errors arising from the uncertainties of
these quantities. Hence, this paper should be taken as a
methodological guide, and a more practical use may be re-
calculated for such constants in individual cases and data
sets.

2. Rotation Curve

The tangent-point method, or the terminal velocity
method, has been most often applied to determine the
inner rotation curve (Clemens 1985). The outer rotation
curve has been determined using spectro-photometric dis-
tances combined with radial velocities of interstellar lines
(Fich et al. 1989), or by the HI disk thickness method
(Merrifield 1991; Honma and Sofue 1997). However, the
outer rotation curve is still crude mainly because of the
distance uncertainties.

Figure 1 shows a rotation curve of the Galaxy obtained
by compiling measured rotation velocities from the litera-
ture in the decades (Sofue et al. 2009). The galactic con-
stants are taken to be R0 =8.0 kpc and V0 =200 km s−1in
this paper. Recent values from VERA observations are
also included (see table 3). Rotation velocities within the
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Table 1. Plummer potential parameters for a model galac-
tic rotation curve, mimicking the observed rotation curve in
figure 1.

Component i ai (kpc) Mi (M⊙)
1 0.2 0.8× 1010

2 3.6 0.6× 1011

3 15 2.0× 1011

solar circle are accurately determined using the tangent
point method, which uses the terminal velocities in the
spectral lines of interstellar gases (Clemens 1985). Since
this method does not require distances of the emission re-
gions, it gives relatively high accuracy of rotation velocity.
On the other hand, the outer rotation curve is crude, be-
cause the distance measurements of objects, which usually
contain large errors, are inevitable (Blitz 1979; Fich et al.
1989; Merrifield 1992; Honma and Sofue 1997; Binney and
Dehnen 1997).

In order to discuss the accuracy of derived rotation ve-
locities in the following sections, we need to use an approx-
imate rotation curve to represent the observations. Since
the present study treats the kinematics only in the galactic
plane, we here adopt a simple model of three-component
Plummer potential.

V (R) =

√
R

∂Φ
∂R

, (1)

and

Φ = Σ
GMi√
R2 + a2

i

, (2)

where G is the gravitational constant, ai are the scale
radii of the individual mass components, and Mi are the
masses. Table 1 lists the values of the parameters, and
figure 2 shows the model rotation curve, which approxi-
mately represents the observations in figure 1 with R0 = 8
kpc and V0 = 200 km s−1. We note that the calculated
results in the next sections are not strongly dependent on
the shape of rotation curve.

3. Accuracy Diagrams for Rotation Curve

We denote the radial velocity by vr, and perpendicular
velocity to the line of sight by vp = µr with µ being the
proper motion and r the distance to the object from the
Sun. These quantities are related to the circular rotation
velocity V as

vr =
(

R0

R
V −V0

)
sin l , (3)

and

vp = µr = − s

R
V −V0 cos l , (4)

where

s = r−R0 cos l (5)
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Fig. 1. Rotation curve of the Galaxy (Sofue et al. 2009).
Inner curve at r < 8 kpc is obtained mainly by the tangent–
point method, while the outer curve is crude because of the
ambiguities in distance estimation.
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Fig. 2. A Plummer model rotation curve V (R) for parame-
ters in table 1.
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Here R is the galacto-centric distance, and is related to r
and galactic longitude l as

R =
√

r2 +R2
0 − 2rR0 cos l . (6)

Figure 3 illustrates the definition of used variables and
parameters in this article.

3.1. Rotation Velocity V vr
rot from Radial-Velocity, and

Accuracy Diagram, ∆V vr
rot(X,Y )

If we assume that the object’s orbit is circular around
the Galactic Center, the rotation velocity V can be ob-
tained by measuring the radial velocity vr and its distance
r, which is expressed by the galacto-centric distance R and
longitude l:

V vr
rot =

R

R0

( vr

sin l
+V0

)
. (7)

Since the observations includes errors in vr and r, the re-
sultant rotation velocity V has an error which is expressed
by

∆V vr
rot =

√
δV 2

vr + δV 2
r . (8)

Here,

δVvr =
∂V

∂vr
δvr, δVr =

∂V

∂r
δr. (9)

We obtain

∆V vr
rot =

[(
R

R0 sin l

)2

δv2
r +

(
s V

R2

)2

δr2

]1/2

. (10)

The uncertainty in the galacto-centric distance R arises
from the error in distance measurement as

δR =
s

R
δr. (11)

Note that

sin l = X/r, cos l = −(Y −R0)/r (12)

in the Cartesian coordinates centered on the Galactic
Center. Since equation 10 includes the rotation velocity
V , the error distribution depends on the rotation curve.

Figure 4 shows the thus calculated distribution of the
expected error in rotation velocity, ∆V vr

rot, by a contour
map in the Cartesian coordinates (X,Y ). We may call this
diagram the ”accuracy diagram” for the rotation velocity.
The calculation was made for a combination of δvr =1 km
s−1and δr/r = 0.02, or 2% error in distance measurement.
The regions with higher accuracy or with smaller errors
are presented by bright area, while regions with larger
errors are dark.

This figure indicates that the accuracy is highest along
the tangent point circle. Along this circle s = r −
R0 cos l = 0, and the second term in equation 10 is equal
to zero. For different parameters, the diagram may change
quantitatively, but the overall characteristics remain un-
changed, and hence, this diagram represents the general
behavior of the accuracy distribution.

This is obviously the reason why the tangent-point
method has resulted in higher-accuracy rotation curve in-
side the solar circle as in figure 1. Thus, the tangent-point
circle is a special region for accurate rotation curve deter-
mination from radial velocity observations. Outside the
tangent-point circle, the error is smoothly minimized in
broad ”butterfly” regions around l ∼ 100 − 135deg and
l ∼ 225− 280deg.

On the other hand, this method yields the largest error
near the Sun-GC line, where the direction of the circular
rotation is perpendicular to the line-of-sight velocity, so
that small observational error in the radial velocity largely
affects the resultant rotating velocity. The Sun-GC line
is, thus, the singular line in this method.

The uncertainty in R is calculated as in equation (11),
and propagates to the uncertainty in V vr

rot as equation (10).
Therefore, equation (10) already includes the uncertainty
δR caused by δr. The uncertainty in R also causes the
uncertainty in model V (R). This affects the result by the
second order smallness, because the rotation curve is as-
sumed to be nearly flat in most regions. However, δR
becomes very large at small R, as equation (11) indicates.
Therefore, the accuracy diagram should not be taken se-
rious near the Galactic Center. These arguments apply
similarly to the following sections.

3.2. Rotation Velocity V µ
rot from Proper Motion, and

Accuracy Diagram, ∆V µ
rot(X,Y )

If we assume circular motion, the rotation velocity is
also determined by measuring the proper motion µ as

V µ
rot = −R

s
(rµ +V0 cos l ). (13)

In the same way as in the previous section and remem-
bering that R2 − s2 = R2

0sin
2l, we have

∆V µ
rot =

√(
∂V

∂r

)2

δr2 +
(

∂V

∂µ

)2

δµ2 (14)

=
R

|s|

[
r2δµ2 +

(
R2

0V sin2l

sR3
+

vp

r

)2

δr2

]1/2

. (15)

The errors in vp and r may be assumed to be proportional
to the distance. We here calculate an accuracy diagram
for δµ = 0.21mas y−1, and δr/r = 0.02. Figure 5 shows
the thus calculated accuracy diagram ∆V µ

rot for the same
rotation curve as in figure 2.

Figure 5 shows that the error becomes smallest along
the Sun-GC line, and is still small in a large area in the
anti-center direction. On the other hand, the error is
largest around the tangent point circle, and the error equa-
tion 15 diverges on the tangent-point circle, where s = 0.
Thus, the tangent-point circle is a singular region in this
method.

These behaviors are just in the opposite sense to
the case for equation 10 and figure 4. In this con-
text the radial-velocity method, including the tangent-
point (terminal-velocity) method, and the proper-motion
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Fig. 4. Accuracy diagram ∆V vr
rot(X,Y ) for δvr = 1 km s−1,

δr/r = 0.02 (2% distance error). Dashed circles represent
R = 8 kpc (solar circle), R = 15, 20 and 25 kpc. Contours
are drawn room white to black at 0, 2, 4, ... 10, 15, 20, ... 50,
60, 70, ... with 10 and 30 km s−1by thick lines. Sources near
the Sun-GC line yield the largest error.
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Fig. 5. Accuracy diagram ∆V µ
rot(X,Y ) for δµ=0.21mas y−1

and δr/r = 0.02 for 2% distance error. Contours are drawn
at 2, 4, ..., 20, 25, 30, ... km s−1with 10 km s−1by thick line.
The error becomes largest along the tangent point circle.
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Fig. 6. Accuracy diagram ∆V vec

rot (X,Y ) for δµ = 0.21 mas
y−1, δvr = 1 km s−1, and δr/r = 0.02.. Contours are drawn
at 2, 4, 6, .... 20, 25, 30, ... km s−1with 10 and 20 km s−1by
thick lines.

method are complimentary to each other, in so far as cir-
cular rotation assumption is made.

3.3. Rotation Velocity V vec
rot from Velocity Vector, and

Accuracy Diagram ∆V vec
rot (X,Y )

If the radial velocity and proper motion as well as the
distance are known at the same time for the same object,
its three-dimensional velocity vector is determined with-
out assuming circular orbit. The absolute value of the
velocity vector is calculated by

V =
√

U2
p +U2

r , (16)

where

Up = rµ +V0 cos l (17)

and

Ur = vr +V0 sin l . (18)

Since the deviation of velocity vector from the circular
orbit may be assumed to be small, we here neglect the
error arising from the non-circular components, and define
the rotation velocity by the velocity given here as V vec

rot =
V . We now calculate the error included in the absolute
value of the velocity vector by

∆V vec
rot =

[(
∂V

∂µ

)2

δµ2 +
(

∂V

∂vr

)2

δv2
r +

(
∂V

∂r

)2

δr2

]1/2

(19)

=
1
V

[
U2

pr2δµ2 +U2
r δv2

r +U2
pµ2δr2

]1/2
. (20)

Figure 6 shows an accuracy diagram for velocity vector,
or the distribution of ∆V vec

rot calculated for δvr =1 km s−1,
δµ = 0.21 mas y−1, and δr/r = 0.02. This diagram shows
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a milder variation of error in V near the tangent-point
circle compared with that calculated for the radial velocity
method in figures 4 and that for proper motion method
in 5. Also, figure 6 shows milder error variations around
the Sun-GC line. Thus, we see that the velocity-vector
method has no singular regions to determine the rotation
velocity, and provides us with more general information
from the entire galactic disk.

3.4. Observed examples

Recently, trigonometric parallax and proper motion
measurements of maser sources have obtained reliable
data for galactic rotation determinations (Oh et al. 2009;
Ando et al. 2011; Nagayama et al. 2011a, b). Combined
with radial velocities from associated CO line, the data
are available to calculate the rotation velocity. Table 2
shows the observed parameters from the VERA observa-
tions, where the errors for systemic CO velocity were read
from the original papers cited therein. We calculate V vr

rot,
V µ

rot, and V vec
rot and their errors from the data in this table.

Table 3 shows the calculated results.
The thus derived values for rotation velocities are con-

sistent with each other as well as with those derived by Oh
et al. (2009). However, some peculiar results are obtained
in proper-motion method for near tangent-point sources,
whose values are not listed. In general, the velocity-vector
method gives more reliable results. The slight differences
in the here derived rotation velocities V vec

rot and those by
Oh et al. is due to neglecting motions perpendicular to the
galactic disk in this paper, since we aimed at examining
the accuracy diagrams within the galactic disk.

4. Radial-Velocity and Proper-Motion Fields and
Kinematical Distances

Once the rotation curve is determined, and if we assume
circular rotation, the rotation curve may be in turn used to
measure kinematical distances of objects by applying the
velocity-space transformation (Oort et al. 1958; Nakanishi
and Sofue 2003, 2006). The kinematical distance is ob-
tained either from radial velocity or from proper motion
using equations (3) and (4).

4.1. Radial-Velocity Field vr(X,Y )

If we assume circular motion, the velocity field can be
used to derive kinematical distance rvr by measuring the
radial velocity vr. This velocity-to-space transformation is
useful to map the density distribution of interstellar gases
from HI and/or CO emission lines (e.g. Nakanishi and
Sofue 2003). The kinematical distance r is given by

r = R0 cos l ±
√

R2 −R2
0sin

2l. (21)

Here the galacto-centric distance R is related to the radial
velocity through equation 1, where V vr

rot is replaced with
the determined rotation velocity V (R). Then, we obtain

R = R0V (R)
( vr

sin l
+V0

)−1

. (22)

Figure 7 shows the variation of vr as a function of r at

l = 30◦. Figure 8 (a) shows a radial velocity field, e.g.
the distribution of vr on the galactic plane, calculated for
the model rotation curve in figure 2. Such velocity fields
have been often used to obtain the distribution of inter-
stellar gases from radial velocities of the HI line and CO
molecular lines (e.g. Nakanishi and Sofue 2003; 2006).

4.2. Accuracy diagram ∆rvr(X,Y )

The accuracy of the velocity-to-space transformation
depends on the accuracy of the kinematical distance rvr .
We now construct an accuracy diagram for rvr by differ-
entiating equation (21) with respect to vr to obtain the
error ∆rvr of rvr in terms of the error δvr of vr. Since
V (R) is a slow function of R and r, we may neglect the
terms including the derivative of ∂V (R)/∂r δr. Note that
this approximation does not hold in the Galactic Center
at R<∼0.5 kpc, so that the following results is not precise
enough in the central region. We, then, obtain

∆rvr =
R3

R0

1√
sin2l(R2 −R2

0sin
2l)

δvr

V (R)
(23)

Figure 9 shows the accuracy diagram of the kinemati-
cal distance r, or the distribution of ∆rvr on the galactic
plane, calculated for δvr = 1 km s−1using the model rota-
tion curve shown in figure 2. It is trivial that the distance
error is largest along the Sun-GC line, where the motion
by galactic rotation is perpendicular to the line of sight.
The figure shows that the tangent-point circle is a sin-
gular region, where the distance determination cannot be
applied. This is deeply related to the near-far ambigu-
ity problem in solving the kinematical distance inside the
solar circle.

4.3. Proper-Motion Field µ(X,Y )

Given a rotation curve V (R), and if we assume circular
rotation, the proper motion of an object is given by

µ = −1
r

( s

R
V (R)+ V0 cos l

)
. (24)

Figure 10 shows the variation of µ as a function of dis-
tance r in the direction of l = 30◦. Figure 11 shows the µ
field, or the distribution of proper-motion on the galactic
plane, calculated for the model rotation curve in figure 2.
Obviously, an object on the solar circle has proper motion
of

µ⊙ = − V0

R0
= Ω0. (25)

For our present values R0 = 8 kpc and V0 = 200 km s−1,
we have µ⊙ = −5.26 mas y−1.

This kind of µ field may have not been used in the cur-
rent studies for galactic dynamics because of the lack in
a sufficient number of objects with measured proper mo-
tions. However, the progress in VLBI trigonometric mea-
surements have made it possible to apply such a diagram
for determination of kinematical distance rµ. It must be
noted that there is no singular region beyond the Galactic
Center.
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Table 2. Distances, proper motions, and radial velocities for star forming regions observed with VERA.

Source l b r± δr vr ± δvr µ± δµ† Reference
(deg) (deg) (kpc) (km s−1) (mas y−1)

IRAS 06058+2138 188.9 0.88 1.76± 0.11 3± 3 2.57± 0.40 (1)
IRAS 19213+1723 52.10 1.04 3.98± 0.57 41.7± 2 −14.66± 4.41 (1)
AFGL 2789 94.60 -1.79 3.07± 0.29 −44± 2 −4.03± 0.40 (1)
G48.61+0.02 48.61 0.02 5.03± 0.19 19± 1 −5.86± 0.20 (2)
ON1 69.54 -0.98 2.47± 0.11 12± 1 −7.50± 0.01 (3)
ON2N 75.78 -0.34 3.83± 0.13 0± 1 −7.98± 0.03 (4)

(1) Oh et al. (2009); (2) Nagayama et al. (2011a); (3) Nagayama et al. (2011b); (4) Ando et al. (2011)

† Recalculated from vp given in the original papers.

Table 3. Values of V vr
rot, V µ

rot and V vec
rot and their errors for sources in table 2.

Source R± δR V vr
rot ±∆V vr

rot V µ
rot ±∆V µ

rot V vec
rot ±∆V vec

rot

(kpc) (km s−1) (km s−1) (km s−1)
IRAS 06058 9.74± 0.11 219.9± 23.9 177.6± 3.6 178.4± 3.6
IRAS 19213 7.05± 0.25 223.0± 12.9 — ‡ 199.5± 2.0
AFGL 2789 8.8−±0.12 171.4± 16.7 177.1± 16.7 172.4± 4.0
G48.61 6.01± 0.01 169.2± 1.7 — 169.2± 0.9
ON1 7.50± 0.01 199.6± 1.0 — 199.4± 0.10
ON2N 7.98± 0.03 199.4± 3.1 — 200.0± 1.5

‡ Near tangent point.

Remembering R =
√

r2 +R2
0 − 2rR0 cos l and s = r−

R0 cos l , we may iteratively solve the above equations to
obtain the kinematical distance r in terms of µ. We first
start with an arbitrary initial value of r = r1 to calculate
the corresponding proper motion µ1. Then the difference
δµ = µob −µ1 is related to a correction δr to r as

δrµ =
−rδµ

µ+(1/R− s2/R3)V (R)
. (26)

Now, the initial value of rµ = r1 is corrected for thus ob-
tained δr1 to yield the second approximate value r2 =
r1 + δr1. Equation (24) is then used to find the next ap-
proximate value µ2, which is further used to get the second
correction δr2 to obtain r3 and µ3. In this way, the itera-
tion may be repeated until the difference δµi+1 = µob−µi

becomes sufficiently small compared to the observational
error. Since the µ field has a mild variation over the galac-
tic disk as shown in figure 11, the iteration usually re-
sults in a sufficiently stable value within several times,
e.g. within i = 4 to 5. If the µ value exceeds the maxi-
mum value plotted in figure 11, we have no solution, but
the iteration diverges.

Table 4 shows an example of the convergence for a case
of an assumed object at l = 30◦ and µ = −4 mas y−1,
starting from an arbitrary distance at r = 15 and 2 kpc
corresponding to far and near-side solutions. The table
shows the rapid convergence of the iteration for both sides.

4.4. Accuracy diagram ∆rµ(X,Y )

The error propagation is estimated from equation (24)
by giving small perturbations to r and µ. We again ne-
glect the term including (∂V (R)/∂r)∆r. Then ∆rµ, or

the error in rµ, may be expressed in terms of δµ as

∆rµ =
r2δµ

V (R) [rs2/R3 − (r + s)/R]−V0 cos l
. (27)

Figure 12 shows the accuracy diagram for kinematical
µ distance rµ, or the distribution of ∆rµ on the galac-
tic plane, calculated for δµ = 0.2 mas y−1. The figure
indicates that the distance ambiguity is largest along the
Sun-GC line in the near side of the Galactic Center, where
the objects have proper motions µ∼ [V (R)−V0]/r, which
is usually small because of the flat rotation curve.

On the other hand, the ambiguity is drastically reduced
in the region beyond the Galactic Center, where the ob-
ject moves in the opposite direction to the Solar motion,
perpendicularly to the line of sight at about twice the ro-
tation velocity, yielding large proper motion

µ ∼−V (R)+ V0

r
, (28)

yielding µ = −5.26 mas y−1for a solar circle object be-
yond the Galactic Center. Hence, the distances of Sun-
GC line objects beyond GC may be determined with rel-
atively good accuracy from the proper motion method.
This is particularly important, because distances cannot
be measured by radial-velocities. Also, the trigonometric
(parallax) measurements would be still difficult for such
distant objects beyond GC, whereas the proper motion is
sufficiently large.

We here try to apply the proper-motion method for
kinematical distance rµ to the observed µ values given in
table 2. Table 5 lists the thus derived distances. We ob-
tained converged solutions for the two sources, FGL2789
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Table 4. Example of convergence of µ and rµ for an assumed object for far and near side solutions.

Far solution Near solution
i l µ rµ µ rµ

(deg) (mas y−1) (kpc) (mas y−1) (kpc)
0 30◦ −4.0± 0.1 15.0 −4.0± 0.1 2.0
1 -4.93949 18.5053 -1.83192 7.34575
2 -4.09845 18.993 -5.55054 4.90354
3 -3.99913 18.9885 -3.57916 5.43869
4 -4.00003 18.9886 -4.02638 5.40723
5 -4. 18.9886 -3.99951 5.40782
6 -4. 18.9886± 0.44 -4.00001 5.40781± 0.043

Table 5. Proper-motion distances, rµ, determined for the VERA data in table 2.

Source l rπ ± δrπ µ± δµ rµ ± δrµ

(deg) (kpc) (mas) (kpc)
IR06058 188.9 1.76± 0.11 2.6± 0.4 — (no solution)
IR19213 52.10 3.98± 0.57 −6.5± 0.8 —
AFGL2789 94.60 3.07± 0.29 −4.0± 0.5 5.5± 0.4
G48.61 48.61 5.03± 0.19 −5.8± 0.1 6.5± 0.1
ON1 69.54 2.47± 0.11 −6.0± 0.7 —
ON2N 75.78 3.83± 0.13 −5.4± 0.2 —

and G48.61+0.02. The iteration diverged for the other
sources, whose proper motions exceed the expected values
from the model rotation curve. This may arise either due
to intrinsically non-circular motions of the sources (e.g.
Oh et al. 2009), or by the adopted rotation curve which
might not well represent the true galactic rotation.

5. Discussion

We have analyzed the expected errors in rotation curve
determinations arising from observational errors of dis-
tance, radial velocity and proper motion for individual ob-
jects depending on their galactic positions. We displayed
the error distributions for derived rotation velocities from
the various methods as accuracy diagrams. We presented
the accuracy diagrams for some combinations of assumed
errors in r, vr and vp, while they represent the general
properties of the error distributions. If we adopt different
combinations of intrinsic observation errors, the diagrams
will change quantitatively, but their general characteris-
tics are similar to those presented here.

The radial velocity method assuming circular motion
has been most often used in the decades. The tangent
point method for the inner rotation curve using the HI and
CO line emissions is an extreme case choosing objects on
the loci of the minimum errors in figure 4. The accuracy
diagram, ∆V vr

rot(X,Y ), well explains the reason why the
observed rotation curve in figure 1 is nicely determined at
R < 8 kpc by the tangent-point method compared to the
outer rotation curve. The tangent-point circle is a spe-
cial region where the radial velocity method can give the
highest accuracy rotation curve. Furthermore, this dia-

gram suggests that the butterfly areas at l∼ 100−135deg
and l ∼ 225−280deg are suitable regions for selecting the
sources for determination of outer rotation curve in this
method. It should be mentioned that similar accuracy is
expected for sources within the tangent-point circle in or-
der to determine the inner rotation curve. Sources near
the Sun-GC line are, of course, not appropriate for this
method, as the accuracy diagram shows singularity.

In the proper motion method assuming circular motion,
the most accurate measurement of rotation velocity is ob-
tained for objects near the Sun-GC line as shown by the
accuracy diagram, ∆V µ

rot(X,Y ), in figure 5, as indeed re-
alized by Honma et al. (2007). It must be also empha-
sized that the minimum error area is widely spread over
l∼ 120−250deg in the anti-center region, as well as in the
central region inside the tangent-point circle. The largest
error occurs for objects lying near the tangent-point cir-
cle. Thus, the tangent-point circle is singularity circle in
this method.

In the 3-D velocity vector measurement, where no as-
sumption of circular motion is made, the three indepen-
dent values of the radial velocity, proper motion and dis-
tance are required at the same time. The accuracy dia-
gram, ∆V vec

rot (X,Y ), in figures 6 indicates milder depen-
dence of the accuracy on the location of the sources com-
pared to those in the previous two methods. Optimization
of source selection is, therefore, easier in the 3-D method.

Analyses of the accuracy diagrams presented in this pa-
per may summarize the behaviors observed in the galactic
rotation curves obtained in the decades. In the current
observations, source selection has been optimized by the
authors a priori, while it was not necessarily in a system-
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Fig. 7. Variation of radial-velocity vr as a function of the
line of sight distance r at l = 30◦.
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Fig. 8. Radial-velocity field, vr(X,Y ), for the rotation curve
in figure 2. Contours are drawn every 20 km s−1interval with
bright region being positive and dark being negative veloci-
ties.
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Fig. 9. Accuracy diagram, ∆rvr (X,Y ), for δvr = 1 km s−1.
Contours are drawn at δr =0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
0.64, .... kpc from white to dark.
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Fig. 10. Variation of proper motion µ as a function of the
line of sight distance r at l = 30◦.
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Fig. 11. Proper-motion field, µ(X,Y ), for the rotation curve
in figure 2. Contours are drawn every 1 mas y−1 with the
thick line near the solar circle being -5 mas y−1.
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Fig. 12. Accuracy diagram, ∆rµ(X, Y ), for δµ = 0.2 mas
y−1. Contours are drawn at δr =0.01, 0.02, 0.04, 0.08, 0.16,
0.32, 0.64, .... kpc from white to dark.
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atic way. The present analysis may be helpful for further
source selections in the future in order to optimize the ob-
servations for higher accuracy rotation curves from limited
resources of observing time and facilities.

Once a rotation curve is obtained, it may be in turn
used to map the ISM and stellar objects in the galac-
tic plane from their radial velocities and proper motions.
The former method has been often applied to map the
Galaxy. The latter method, however, is not used often be-
cause of the lack of proper motion measurements. The re-
cent VLBI trigonometric measurements of proper motions
would be challenging in mapping the Galaxy. We have
presented the radial velocity field, vr(X,Y ), and proper
motion field, µ(X,Y ), for an assumed circular rotation
curve as in figure 2. We constructed accuracy diagrams,
∆rvr(X,Y ) and ∆rµ(X,Y ), for distance measurements us-
ing the velocity and proper motion fields. The ∆rvr(X,Y )
field confirms the current behaviors seen in the galactic
maps so far published in the decades. The ∆rµ(X,Y ) also
confirms that the proper motion measurements are pow-
erful tool to solve the distance ambiguity in the Galaxy
along the Sun-GC line, particular for sources beyond the
Galactic Center.

Finally, we comment on possible systematic errors.
Non-circular motions by the bar, spiral arms, random mo-
tions, tidal effects by the companion galaxies, etc.., would
be superposed on the rotation curve. Such effects will
cause systematic errors in the determined quantities, and
affect the error analyses. The uncertainties in the adopted
galactic constants like R0 and V0 affect the results, which,
moreover, affect the adopted rotation curve to calculate
the errors. Hence, the present error analyses include circu-
larity among the evaluated quantities and errors. This cir-
cularity means that the results should not be interpreted
too rigorously, but are to be used as a guide to the galac-
tic dynamics based on the adopted galactic constants and
the assumption of circular rotation.
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