Shutting down or powering up a (U)LIRG? Merger components in distinctly different evolutionary states in **IRAS 19115-2124 (The Bird)**

> Vaisanen et al. 2017 MNRAS.471.2059V arXiv: 1701.00890 Presenter: K. Kushibiki

Contents

Abstract

1. Introduction

- 2. Observation and Data Reductions
- 3. Results
- 4. Discussion
- 5. Bird at High-redshift

Abstract

SINFONI near-infrared IFU spectroscopy and SALT optical long-slit spectroscopy

→ History of nearby merging luminous infrared galaxy "The Bird" (IRAS19115-2114)

- SINFONI NIR IFU → line-ratio maps
- SALT optical spectra \rightarrow stellar population fitting

The distinct component separate in line-ratio diagnostic

- Off-nuclear starburst: 60-70% of total SFR, 4-7 Myr age, constant long-term SF
- Most massive nucleus: quenched with a starburst age > 40 Myr, budding AGN
- Secondary massive nucleus: intermediate stage
 - Latter two have old population consistent with starburst triggered > 1 Gyr ago
- \rightarrow Simplest explanation of the history is **a triple merger**

The Bird offers an opportunity to **witness multiple stages**

- triggering and quenching of SF
- the early appearance of AGN activity

And cautionary note on interpretations of high-redshift observation with low spatial resolution and without infrared data

1. Introduction

The strongest starburst activity is linked to interactions or merger: ULIRGs

- Inflow of gas \rightarrow nuclear starburst in dusty environment
- Strong winds, growing BH and following AGN \rightarrow terminate starburst

Not all ULIRGs fit to the above scenario

- Strongest starburst in overlap region (Mirabel+1998, Karl+2010)
- Off-nuclear starburst (e.g. Jarret+2006, Herrero-Illana+2017)
- Multiple interactions

In this paper, a case of a LIRG system (log $L_{IR}/L_{\odot}=11.9$); "The Bird"

NIR IFU data and optical spectra

→ spatial and velocity-based disentangling of line emissions, which is important for complex target such as LIRGs

Key points: "composite objects" for many advanced mergers

- Mixture of AGN and SF emission
- Shock emission together with SF

What is the case for the Bird ? ANG or shock with SF or only shock ?

1. Introduction

1.1 IRAS19115-2124: the Bird

- Distance = 200 Mpc (z ~ 0.05)
- Infrared luminosity: $\log L_{IR}/L_{\odot} = 11.9$
- Far-IR SED based SFR ~ 190 M_{\odot}/yr
- Two main nuclei (Heart and Body)
 - ~ 1.5 kpc (1.5") projected distance
 - Both have bars
- 20 kpc scale tidal tail
- Third component: satellite galaxy (Head)
 - projected 2 kpc North of two nuclei

Fig. 1. K-band AO image + HST/I, B

2. Observation and data reduction

2.1. SINFONI

Observation: Near infrared IFU data

- K-band (1.95-2.45µm, R~4000): final FOV=9.5"x10.5", pixel scale=0".125, total 3600s
- J-band (1.10-1.40µm, R~2000): the same manner as K-band, total 1800s
- Higher resolution K-band: 3"x3" area centered in between the Heart and Head, total 3600s Natural guide star AO: FWHM = 0.4" (Seeing: 0.6"-0.9")

Date reduction: ESOREX (Freudling+2013)

- Dark, flat, detector linearity, geometric distortion corrections
- Wavelength calibrations using Neon and Argon arcs
- Telluric correction and initial flux calibration with spectrophotometric standards
 - → Final flux calibration with photometry of Vaisanen+2008(K-band), 2MASS (J-band) Absolutely accurate within 20%

2. Observation and data reduction

2.2 **SALT**

Observation: 2 optical spectra

- R~1000
- From blue-ward of [OII] λ 3727 to 7500 AA
- Total 1200s (first set) and 1800s (second set)
- PA=10 going through the Head and Body+Tail (Just to the east of Heart nucleus)

Reduction: PySALT (Crawford+2010)

- 4 apertures: Head, Tail, Body+Heart, North of Head (~1.6" seeing limited constraint)
- 2 spectra were averaged per galaxy component and aperture

2.2 VISIR

- Mid-infrared NB imaging for the PAH emission distribution
- 0.8" seeing condition, total 1800s
- Reduction with ESOREX
- S/N is not enough for a detailed study, but general features are recognizable

3.1. Analysis of the IFU data

QFitsView program

- Continuum subtracted line maps
- Aperture for each component are shown in Fig 3
- Velocity fields using strong emission lines

3.2. Emission features

Pa α : Ionizing OB-star population of ~10 Myr or less [FeII]: Shocking from SN remnants \rightarrow older ~ 30 Myr HeI: Youngest stellar population H₂1-0S(1) (Strongest in H₂ emissions): Warm molecular gas

Emission line fluxes

- IDL aperture photometry of emission feature maps
- From spectra extracted from spatial apertures in the datacubes
- → Line ratios (Memo: Calzetii reddening law)

Fig. 3. collapsed K-band

lable I	
Aperture	Radius [arcsec and kpc]
Body	0.75
Body-nuc	0.25
Heart	0.75
Heart-nuc	0.25
Head	1.50
Tail	1.25
* 1" ~ 1 kr	$C = 0.7 \sim 0.05$

Are Seconds

2 0 -2 -Arc Seconds

3. Results (Spectra)

3. Results (Tables)

Regions aperture		Body 0.75	Body-nuc 0.25	Heart 0.75	Heart-nuc-nuc 0.25	Head 1.5	Tail 1.25	Integ. full
Line	$\lambda_0 ~[\mu m]$							
HeI(J)	1.0833	5.77 ± 2.02	0.73 ± 0.71	13.46 ± 3.09	1.71 ± 1.10	70.60 ± 7.06	27.54 ± 4.41	212.72 ± 12.26
$Pa\gamma$	1.0941	4.72 ± 2.39	0.56 ± 0.82	9.15 ± 2.75	1.24 ± 0.94	34.24 ± 5.97	12.60 ± 3.81	114.12 ± 11.84
FeII	1.2570	2.38 ± 1.27	0.26 ± 0.42	9.51 ± 2.55	1.47 ± 1.00	37.87 ± 5.09	6.06 ± 2.04	110.79 ± 8.71
$Pa\beta$	1.2822	10.13 ± 2.41	1.69 ± 0.83	24.13 ± 3.96	3.64 ± 1.53	96.75 ± 8.02	26.42 ± 4.17	248.82 ± 13.06
$Pa\alpha$	1.8756	55.45 ± 4.43	6.44 ± 1.51	127.95 ± 6.74	20.92 ± 2.72	495.55 ± 13.26	135.78 ± 6.94	1286.40 ± 21.36
${ m Br}\delta$	1.9451	1.66 ± 1.05	0.26 ± 0.33	4.98 ± 1.22	0.82 ± 0.49	28.10 ± 2.89	6.95 ± 1.44	49.64 ± 3.84
1-0S(3)	1.9576	16.42 ± 2.25	2.91 ± 0.95	11.76 ± 1.92	1.76 ± 0.78	22.47 ± 2.85	10.27 ± 1.86	142.52 ± 6.89
1-0S(2)	2.0338	3.95 ± 0.98	0.79 ± 0.42	3.98 ± 1.19	0.74 ± 0.49	9.36 ± 1.77	4.56 ± 1.08	41.91 ± 3.73
HeI(K)	2.0587	1.35 ± 0.69	0.04 ± 0.13	3.57 ± 1.12	0.57 ± 0.45	23.25 ± 2.87	5.25 ± 1.36	45.32 ± 4.01
2-1S(3)	2.0735	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.91 ± 0.17	0.00 ± 0.00	0.00 ± 0.00
1-0S(1)	2.1218	10.04 ± 1.86	1.88 ± 0.83	10.18 ± 1.87	1.51 ± 0.74	23.20 ± 2.85	10.82 ± 1.96	109.78 ± 6.24
2-1S(2)	2.1542	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.80 ± 0.20	0.00 ± 0.00	0.00 ± 0.00
$\mathrm{Br}\gamma$	2.1661	7.22 ± 1.68	0.91 ± 0.59	13.92 ± 2.33	2.38 ± 0.96	54.57 ± 4.61	14.04 ± 2.34	142.93 ± 7.46
1-0S(0)	2.2233	3.17 ± 1.14	0.58 ± 0.52	3.51 ± 1.09	0.49 ± 0.39	10.91 ± 2.15	4.35 ± 1.28	48.32 ± 4.31
2-1S(1)	2.2477	4.82 ± 1.27	0.66 ± 0.50	3.42 ± 1.01	0.40 ± 0.36	7.55 ± 1.56	3.47 ± 0.99	41.94 ± 3.63

Table 2. Observed line fluxes, in units of $10^{-16} erg s^{-1} cm^{-2}$. Zero values mark non-detections. Aperture size is in units of kpc (and arcsec).

Region	Body	Body-nuc	Heart	Heart-nuc	Head	Tail	Integ.
FeII / Pa β	0.23	0.15	0.39	0.40	0.39	0.23	0.45
1-0 S(1) / Br γ	1.39	2.07	0.73	0.63	0.43	0.77	0.77
1-0 S(1) / Pa α	0.18	0.29	0.08	0.07	0.05	0.08	0.09
FeII / 1-0 S(1)	0.24	0.14	0.93	0.97	1.63	0.56	1.01
HeI / 1-0 S(1)	0.13	0.02	0.35	0.38	1.00	0.49	0.41
1-0 S(0) / 1-0 S(1)	0.32	0.31	0.34	0.32	0.47	0.40	0.44
1-0 S(2) / 1-0 S(1)	0.39	0.42	0.39	0.49	0.40	0.42	0.38
1-0 S(2) / 1-0 S(0)	1.25	1.36	1.13	1.51	0.86	1.05	0.87
1-0 S(3) / 1-0 S(1)	1.64	1.55	1.16	1.17	0.97	0.95	1.30
2-1 S(1) / 1-0 S(1)	0.48	0.35	0.34	0.26	0.33	0.32	0.38
HeI / Br γ	0.29	0.07	0.39	0.46	0.68	0.42	0.40
$A_V (\text{Pa}\beta/\text{Pa}\gamma)$	2.1	6.2	4.6	5.9	5.4	1.8	2.3
$A_V (\text{Pa}\alpha/\text{Pa}\beta)$	6.4	4.0	6.2	6.7	6.0	6.0	6.0
$A_V (\text{Br}\gamma/\text{Pa}\alpha)$	10.2	12.0	6.1	7.1	6.4	5.0	6.6
$A_V (\text{Br}\gamma/\text{Br}\delta)$ [weak]	32.3	25.6	18.7	19.9	7.5	8.7	19.6

Table 3. Column densities and line ratios. Note that the ratios are not extinction corrected in the table, though all figures and maps showing line ratios are corrected for extinction adopting the values using the Br γ /Pa α derived A_V .

3.3. Kinematics and Masses

Radial velocities and velocity dispersion

Gas

NIR emission and $\mbox{H}\alpha$ has consistent value except for the Body

← Deeper component probed by the SINFONI data

CO-band-head absorption region

 \rightarrow Kinematics of stellar component

Fitting with stellar giant and supergiant template

 \rightarrow Good with type K5III to M0III (M0I)

Comparison of above two

Gas σ > Stellar σ

 \rightarrow Complex velocity structures and flows

Table 4		Body-nuc	Heart-nuc	Head	Tail
			v_r [km/s]		
	$Pa\alpha$	14750^{1}	14470^{1}	14940	14550
	H_2 1-0 S(1)	14780^{1}	14500^{1}	14920	14540
	CO band	14780	14540	15000	14550
	$H\alpha$	14590^{2}	14520^2	14940	14470
			σ [km/s]		
	$Pa\alpha$	180	140	100	90
	1-0(S1)	220	120	100	90
	CO band	150	130	120^{3}	70
			v_{rot} [km/s]		
ta	$Pa\alpha$	170	270	100	-
			$m_{dyn} \ [10^{10} \ M_{\odot}]$		
		10	7	2	-

¹ Multiple velocity components, strongest one adopted.

² From V08.

³ A small 375 kpc radius area in the Head.

Fig. 6. CO-band-head of Body-nuc

3.3. Kinematics and Masses

Full Velocity maps

- Horizontally rotating Heart
- Head disjoint from the Heart in the West, but smoother transition over the East wing
- Disk rotation in the Body location
 → Not detected in previous optical obs.

	Body	Heart	Head		
V _{rot}	170 km/s	270 km/s	100 km/s		

Dynamical mass from σ and rotation

- Body (σ =140km/s, r_e=2.4kpc) $\rightarrow \sim 1 \times 10^{11} M_{\odot}$ (> V08 optical ionized gas)
- Heart (σ =130km/s, r_e=1.3kpc) $\rightarrow ~ 7 \times 10^{10} M_{\odot}$ (~ V08)
- Head using smaller aperture than default (σ =70-90, re=0.8kpc) \rightarrow ~ 2 x 10¹⁰ M_o
- \rightarrow Progenitors are 1-2 x 10^{11} $\rm M_{\odot}$ massive disks

Fig. 7. velocity maps

Fig. 8 velocity slices of $Pa\alpha$ map

*V08: Vaisanen+2008 observing the Bird using SALT and VLT/NACO

3.4. Stellar populations and metallicities

Optical spectrum fitting with STARLIGHT (Cid Fernandes+2015)

BC03 SSP & Padova track

Head, Body+Heart, Tail, North of Head

→ Light-weighted mean Age: 0.9-2.4 Gyr Mass-weighted mean Age: 10 Gyr

Indicative SFH: SSP fraction (Fig. 10)

- \rightarrow Body+Heart has a significant peak at 1 Gyr
- ↔ Others have more extended distribution Tail & Extended have population age ~100Myr-1Gyr where Body+Heart devoid of SF

Fig. 9. SALT spec. Fig. 10. SSP fraction Body+Heart Body+Heart Head 25 25 [%] 20 15 10 20 3-bin smoothed 15 10 5 0 0 Head 7 6 8 9 10 6 10 Best fit 30 25 pixels masked out Extended Tail 25 [%] 20 15 10 20 15 Tail 10 8 10 6 9 10 6 8 9 log(Age) [yr] log(Age) [yr] Table 5 Z15 - 800 Myr800 - 1400Myr O/H A_V (gas) age_{light} A_V (stars) < 15 Myr(Myr) (% light) (% light) (% light) (mag) (mag) Body+Heart 1300/60 0.016 55 2 27 8.78 3.0 1.6 Head 2300 / 146 0.011 1.1 42 7 20 8.79 2.5 Tail 900/44 0.019 1.5 60 19 9 8.74 2.4 Extended 2400/45 0.018 1.2 50 29 0 8.85 1.2

 $^{a}% \left(\mathbf{x}^{a}\right) =\left(\mathbf{x}^{a}\right) \left(\mathbf{x}$

Stellar [Fe/H] metallicity: Head has lower stellar metallicity than others

Strong emission line ratios

- Nebular abundance: Uniform over all the apertures 12+log([O/H])~8.8±0.1 (Average of O3N2, DO2, N2) Just below the mass-metallicity relation
- Line ration: Typical to HII region except for the Extended where [NII]/H α , [SII]/H α ~0.6, shock

3.4. Stellar populations and metallicities

A_V extinction

- $A_V(\text{stars})=1.1-1.6 \text{ mag} \leftrightarrow AV(\text{gas})=2.4-3.0 \text{ mag except for the Extended}$
- Typical in SF regions and lower than NIR derived value

NIR absorption lines for further constraints on stellar populations

- Al I, Si I, Ca I absorptions with the model of Maraston2005 discussed in Riffel+2008
- Body & Heart have similar value \rightarrow 1 Gyr
- Tail: Weaker absorption but still detectable with EW ~ 1-2 AA \rightarrow 10, 1000 Myr ?
- Head: Marginally detectable EW < 0.7 AA but CO is as strong as elsewhere \rightarrow 10 Myr
- → Head has different history and Head-peak without absorption feature have extremely young starburst

Table 6

	CO 2.30 μm	Al I 1.13 μ m	Si I 1.21 μm	Ca I 2.27 μ m	$Pa\alpha$	$\mathrm{Br}\gamma$	SB age [Myr]	SP age [Myr]
Body-nuc	19	1.2	2	1.5	14	< 2	40	1000
Heart-nuc	18	1.2	3	2.5	85	13	8	1000
Head	13	< 0.6	_	< 0.5	220	31	6–7	10
Head-peak	< 7	_	_	-	720	105	4	< 9
Tail	16	1.3	< 1	< 1	95	14	8	10, 1000

Puzzling feature: Lack of very strong star formation in the main nuclei (Body)

 \rightarrow Whether a starburst has not even started in the Body or it has been quenched and why? What are the differences between the Bird components? What are their evolutionary phase?

4.1. Excitation mechanisms

H2 line ratio \rightarrow thermal and non-thermal process, excitation temperature, Fig. 1 from Mouri1994 thermal heating mechanisms $T_{vib} \sim 5600 / \ln(1.355 \times I_{1-0S(1)} / I_{2-1S(1)}) \quad T_{rot} \sim -1113 / \ln(0.323 \times I_{1-0S(2)} / I_{1-0S(0)})$ $f_{\rm o/p} = \frac{1.1102 \,[S(3)/S(1)]^{0.449}}{S(2)/S(1)} 10^{-0.004 \,A_K}$ (Reunanen+2002, 2007) -0S(2)/1-0S(0) The difference between T_{vib} and $T_{rot} \rightarrow non-thermal processes$ 1-0S(2)/1-0S(0), 1-0S(3)/1-S(1), and T_{rot} show the dominant mechanism (Mouri1994)

Table 7

- Head & Tail: low Trot → UV photon (PDR)
- Body & Heart: higher Trot \rightarrow shock heating

Region	Body	Body-nuc	Heart	Heart-nuc	Head	Tail
T _{vib} [K] T _{rot} [K] o / p	4900 1700 3.5	3800 2100 3.2	3900 1300 3.0	3200 2000 2.4	3800 980 2.7	3700 1200 2.6
Notes:	flrscs.	shocks	shocks	shocks	UV	UV

0.2 0.3 0.4 0.5 2-1S(1)/1-0S(1)

4.1. Excitation mechanisms

Deblending velocity component in the Body

- Largest 2-1S(1)/1-0S(1) and 1-0S(2)/1-0S(0) from blue-shifted line emission
- Ratios, temp. of systemic velocity component \lesssim previous page
- Line ratio of blue-shifted component: UV fluorescence Thermal temperature: shock heating
- High 2-1S(1)/1-0S(1) perpendicular the Body disk
- \rightarrow Related to conical outflow from nucleus

Summary: Both thermal and non-thermal in the Bird

4.1.1. Diagnostic diagram

- Head: young star-forming, photo-ionization
- Heart: boundary of the SF and AGN
 - nuclear position on the SF side
 - Surrounding area on the AGN side
- Body: Different between velocity-components
 - Remain in AGN region, bur no other AGN signs

Shock contami.

Fig. 11. Line ratio maps

4.2. Is there an AGN hidden in the Bird?

Previous studies about AGN of the Bird (Mainly results are that there is no AGN)

 \rightarrow But these observe the Birds as a single object

The simplest explanation from NIR diagnostic: "There is budding AGN at the Body nucleus"

CO-based $\sigma \rightarrow M_{BH}{\sim}10^{7.6}~M_{\odot}$, with X-ray non-detection with BAT \rightarrow sub-Eddington level

4.3. Age of recent star-formation in the Bird

SF age from H2/Bry, Bry line EW, and "Bry line EW vs CO-index(CO2.3um EW)" (Puxley+1997)

- Head: SB age is consistent with SP age obtained from absorption (~6-7 Myr)
- Tail & Heart: SB age (~8 Myr) smaller than SP age (1 Gyr)
- Body: Non-existence of recombination emissions and [FeII] → lower limit 40 Myr (SNe would happen about 40 Myr until all >8M_☉ stars have gone)
 - \rightarrow Delay between a starburst and AGN \rightarrow interesting test of models of early AGN

	CO 2.30 μm	Al I 1.13 μ m	Si I 1.21 μ m	Ca I 2.27 $\mu \rm{m}$	$\mathrm{Pa}lpha$	$\mathrm{Br}\gamma$	SB age [Myr]	SP age [Myr]
Body-nuc	19	1.2	2	1.5	14	< 2	40	1000
Heart-nuc	18	1.2	3	2.5	85	13	8	1000
Head	13	< 0.6	_	< 0.5	220	31	6–7	10
Head-peak	< 7	_	-	-	720	105	4	< 9
Tail	16	1.3	< 1	< 1	95	14	8	10, 1000

Table 6

4.3 Age of recent star-formation in the Bird

PAH emission (11.3um) from VISIR data (Fig. 13)

- Strongest emission from Heart
- → Condition for PAH destruction or dilution happen at starburst age < 7 Myr

Narrow velocity slices of Paα emission

- \rightarrow Several point-like knots in the Heart and Head
- \rightarrow Young super star cluster or young massive cluster
- K-band AO imaging: Point-like sourcees concentrate on the side facing the larger galaxies
- \rightarrow Triggering massive clusters by compressions of gas

Fig. 13. PAH emission

Fig. 1. K-band AO+HST/I, B

4.4 Histories of the Bird components

Different SFH in the regions: Body+Heart (Bimodal peak) vs Head&Tail (Evenly distributed)

- Older 1 Gyr population → Elevated SF due to an earlier encounter of the Body and Head Typical timescales between first passage and coalescence (e.g. Johanson+2009)
- Strongest young < 6 Myr starburst in the Head \rightarrow due to *the on-going interaction*
- > 40 Myr starburst age \rightarrow second approach of Body and Head happened 50-100 Myr, whereas the Heart appear to be more affected by the on-going merger (shock region)

4.1.1 Two or three galaxies

The origin of Head ?

- Lower stellar population [Fe/H] abundance of the Head,
 - → Consistent with the scenario of its separate origin,
 0.2 dex lower [Fe/H] matches the value expected from mass
- Body systemic velocity is in between that of Head and Tail
 - → A single large progenitor galaxy scenario
 - ↔ Head appears to be connected to the Body with a faint Paα velocity structure. Different axis of rotation
 - \rightarrow Two-galaxy scenario for Head and Body plausible
- \rightarrow Three-galaxy interpretation for the Bird

4.4.2. Off-nuclear starburst and multiple nuclei

- Bird has a spectacular off-nuclear starburst \leftrightarrow ULIRG standard picture (central starburst)
- Toomre Q ~ 0.5 at the Head → SF in the Head is not surprising At the Heart Q < 1 Body has above and below unity value depending on which σ value is used

Note

- There may be connection of off-nuclear starbursts to multiple merging (e.g. Borne+2000) and/or the possibility these systems are evidence that ULIRGs typically happen in (compact) groups of galaxies (e.g. Amram+2007)
- Tight groups of galaxies, such as Hickson compact group, may well be candidates (e.g. Borne+2000)

5. Bird at high-redshift

HST/B, I band imaged convolved, re-binned, and dimmed to scales at $z\sim$ 1-2

How is the Bird observed in each wavelength?

- Red/infrared (rest V-band & I-band): detect clumpy galaxy (e.g. Shibuya+2016)
- Rest B-band: likely interpret the system as a tight group (Left of Fig. 15)
- Optical (rest-UV): Only see the Head
 → strongly star-forming compact galaxy

Would the velocity field be recovered with redshifted H β , H α ?

- Miss the true Body component and its rapidly rotating gas disk
- Head and tidal tails would be interpreted as high-velocity winds
 ↔ interacting/merging component

Careful studies of local ULIRGs are needed to interpret observational result of high-z galaxies Especially for integrated properties of closely interacting or merging systems