Bulge-forming Galaxies with an Extended Rotating Disk at z ~ 2

Tadaki et al. 2017 2017ApJ...834..135T arXiv:1608.05412

Presenter: K. Kushibiki

Contents

Abstract

1. Introduction

- 2. High-Resolution 870 µm Imaging (Sample & Observation)
- 3. Spatial Extent of Star Formation within Galaxies
- 4. Bulge Formation in Extended, Rotating Disks

Abstract

ALMA observations at 870 um for 25 H α -selected SFGs around MS at z=2.5-2.5

- **Dust emission** radiated from a single region close to the galaxy center
 - Extremely compact $R_{1/2, 870\mu m} < 1.5 \text{ kpc}$ (for 9 galaxies)
 - 2x smaller than rest-optical $\langle R_{1/2, 1.6 \mu m} \rangle = 3.2 \text{ kpc}$
 - Comparable with optical size of massive quiescent at similar redshift
- They have **exponential disk** in rest-optical
 → Transition phase from extended disks to compact spheroids
- High SFR density within the central 1 kpc
 → Intense starbursts can rapidly build up a central bulge in several hundred Myr
- Ionized gas kinematics = **rotation-supported** with angular momentum ~ typical SFG
- → Bulges are commonly formed in extended rotating disks by internal processes

1. Introduction

 \rightarrow Quenching of SF must be accompanied by significant structural change

Two main evolutionary paths

- 1. Slow cosmological path: Galaxy size $R \propto (1+z)^{-1}$
 - \rightarrow Quench SF and add to the passive population in a later epoch

2. Fast path: Downward transition in the size-mass plane

- → Require "compaction"
 - 1. Major merger
 - 2. Internal angular momentum redistribution:
 - Effective at high-redshift (gas-rich & effective viscous dissipation) May lead to inside-out quenching (Morphological quenching / AGN)

ALMA observation to search for compact concentrations of ISM as sign of fast paths

- Advantage: No selection bias in galaxy morphologies
- Key goal: Morphological transformation from extended exponential disk to spheroid

2. High-Resolution 870µm Imaging

2.1. Sample selection

- Narrow-band imaging survey with the MOIRCS in the SXDF-UDS-CANDELS field \rightarrow 25 galaxies for ALMA observation
 - Prioritize bright object in MIPS 24µm maps (4 out of 25 are not detected at 24µm)

2.2. Galaxies properties

From 3D-HST catalog

- Stellar mass: SED fitting (BC03, Solar Metallicity, Exponentially declining SFH, Calzetti law)
- SFR: Combination of rest-2800AA and IR luminosity (PACS 160 μ m or MIPS 24 μ m) 4 galaxies without IR detection: H α -based SFR (dust correction with SED A_V)
- Structural parameters (half-light radius / Sersic index): GALFIT in HST/WFC3 H₁₆₀-band image

2. High-Resolution 870µm Imaging

2.3. ALMA observations

6-8 minutes, band 7, central frequency 345or350 GHz (~870µm)

 \rightarrow Two kinds of clean maps

	Low-resolution mapHigh-resolution map(uv-taper: on-sky FWHM=0".5)(natural weighting)				
Beam-size	0".47-0".54	0".15-0".21			
Aperture for phot	1″.5	1″.0			
RMS level of flux	98-142 µJy/beam	56-74 µJy/beam			
Detection threshold	4σ	5σ			

 \rightarrow Detected 16 out of 25 galaxies

2.4. KMOS observations

Rotation velocity (v_{rot}) & Local velocity dispersion (σ_0)

• Determining radius at which velocity gradient reaches maximum: R_{max} \rightarrow Rotation velocity at R_{max} and local velocity dispersion in outer disk

Specific angular momentum

• $j_{disk} = k_{disk} \times v_{circ} \times R_{1/2}$ (k_{disk} :correction of deviation from exponential profiles, v_{circ} : circular velocity corrected observational effect & turbulent pressure)

2. High-Resolution 870µm Imaging

Table 1.

3D-HST ID	$z_{\rm NB}{}^{\rm a}$	$\log M_*{}^{\mathrm{b}}$	$\log SFR^{b}$	$\mathrm{SNR}_{0.5}{}^{\mathrm{c}}$	$\mathrm{SNR}_{0.2}^{\mathrm{c}}$	$S_{\rm aper}{}^{\rm c}$	$S_{\rm model}{}^{\rm d}$	$R_{1/2}^{\mathrm{d}}$	$R_{1/2,\mathrm{cor}}^{\mathrm{e}}$	$v_{ m rot}/{\sigma_0}^{ m f}$
(Skelton+14)		(M_{\odot})	$(M_{\odot} \mathrm{yr}^{-1})$			(mJy)	(mJy)	(arcsec)	(arcsec)	
U4-13952	2.19	11.33	2.25	13.4	7.9	$2.51 {\pm} 0.31$	$2.94{\pm}0.55$	$0.24{\pm}0.04$	$0.28 {\pm} 0.06$	3.8 ± 1.3
U4-34817	2.19	11.26	2.36	7.8	5.4	$1.73 {\pm} 0.28$	$2.13 {\pm} 0.78$	$0.31 {\pm} 0.10$	$0.38 {\pm} 0.12$	$H\alpha$ detection
U4-20704	2.19	11.46	2.36	8.1	6.3	$3.00 {\pm} 0.40$	$4.28 {\pm} 1.11$	$0.44 {\pm} 0.10$	$0.48 {\pm} 0.11$	4.2 ± 1.4
U4-28702	2.19	11.03	2.10	10.1	9.7	$1.73 {\pm} 0.36$	$1.64{\pm}0.31$	$0.10 {\pm} 0.02$	$0.13 {\pm} 0.03$	
U4-36568	2.19	11.02	2.49	4.0	$<\!5.0$	$0.71 {\pm} 0.24$				5.3 ± 1.8
U4-24247	2.19	10.71	1.98	4.4	$<\!\!5.0$	$1.09 {\pm} 0.36$				$H\alpha$ detection
U4-32171	2.19	10.71	2.15	$<\!\!4.0$	$<\!\!5.0$					
U4-11582	2.19	10.83	2.01	$<\!\!4.0$	$<\!\!5.0$					6.9 ± 2.4
U4-27289	2.19	10.78	1.78	$<\!\!4.0$	$<\!5.0$					
U4-36247	2.19	11.07	2.42	13.5	16.0	$1.80 {\pm} 0.24$	$1.41 {\pm} 0.18$	$0.05 {\pm} 0.01$	$0.07 {\pm} 0.02$	3.5 ± 2.3
U4-32351	2.19	11.05	2.18	6.5	6.8	$0.95 {\pm} 0.26$	$0.74{\pm}0.24$	$0.10 {\pm} 0.04$	$0.17 {\pm} 0.08$	5.2 ± 0.9
U4-18807	2.19	10.98	1.86	$<\!\!4.0$	5.5	$0.58 {\pm} 0.26$				$7.1 {\pm} 4.9$
U4-27939	2.19	10.60	2.06	$<\!\!4.0$	$<\!\!5.0$					
U4-14574	2.19	10.59	1.99	4.0	$<\!\!5.0$	$1.20 {\pm} 0.46$				
U4-15198	2.53	10.93	2.24	$<\!\!4.0$	$<\!5.0$					
U4-16795	2.53	11.26	2.62	31.0	29.2	$4.59 {\pm} 0.31$	$4.46 {\pm} 0.27$	$0.12 {\pm} 0.01$	$0.13 {\pm} 0.01$	
U4-34138	2.53	11.00	2.24	9.7	11.4	$1.60 {\pm} 0.29$	$1.10 {\pm} 0.19$	$0.06 {\pm} 0.02$	$0.08 {\pm} 0.03$	$3.8 {\pm} 2.0$
U4-28473	2.53	11.31	2.59	26.0	22.5	$4.87 {\pm} 0.45$	$5.12 {\pm} 0.39$	$0.13 {\pm} 0.01$	$0.14{\pm}0.02$	$6.1 {\pm} 4.0$
U4-33135	2.53	11.02	2.07	8.6	9.8	$1.47 {\pm} 0.34$	$1.27 {\pm} 0.25$	$0.07 {\pm} 0.02$	$0.09 {\pm} 0.03$	
U4-27046	2.53	10.83	2.41	$<\!\!4.0$	$<\!5.0$					$H\alpha$ detection
U4-16504	2.53	11.25	2.37	20.4	15.7	$2.82 {\pm} 0.23$	$3.16 {\pm} 0.34$	$0.15 {\pm} 0.02$	$0.17 {\pm} 0.03$	
U4-11780	2.53	10.42	1.93	$<\!\!4.0$	$<\!5.0$					
U4-13197	2.53	10.94	1.55	$<\!\!4.0$	$<\!5.0$					
U4-34617	2.53	11.04	2.42	10.6	13.0	$1.67 {\pm} 0.28$	$0.93{\pm}0.13$	$0.02{\pm}0.01$	$0.04{\pm}0.02$	
U4-14870	2.53	10.50	1.63	<4.0	$<\!5.0$					

3. Spatial Extent of Star Formation within Galaxies

Where & how much stars are formed within galaxies at that epoch

 \rightarrow With 870 µm maps tracing dust emission, the spatial distributions of star formation within galaxies are studied.

For the best sample (detected in both in low-res & high-res map): 12 galaxies

3.1. High-resolution 870 µm maps Fig 3.

Visual inspection

- Little UV emission
 ← strong dust extinction
- 870 µm emission is radiated from a single region close to the rest-optical center
 - → Primarily responsible for star formation in the galaxies

3. Spatial Extent of Star Formation within Galaxies

3.2. Size measurements for 870 µm continuum emission

Measured in the high-resolution map by visibility fitting with circular exponential profile Exponential function in the image plane: $f(R) = \exp(-1.678R/R_{1/2})$

 \rightarrow In the uv-plane: $g(u) = S_{\text{model}} \times \frac{k_0^3}{(u^2 + k_0^2)^{3/2}}$

 S_{model} : total flux of the model, k_0 : spatial frequency to characterize a spatial extent

Impact of residual emission

(extended component, clumps, or deviation from an exponential profile)

 \rightarrow Stacking analysis of the model-subtracted visibilities for 9 compact sources

- 4.3σ detection of residual emission
- Within 2" aperture $S_{\text{extra}} = 0.42$ mJy (21%)

Corrected half-light radius: $R_{1/2,cor}$

= radius enclosing $S_{1/2} = S_{model} + S_{extra}$ in the exponential component

3. Spatial Extent of Star Formation within Galaxies

• For 9 of 12 galaxies, $R_{1/2,870\mu m} < 1.5 \text{ kpc}$ $\rightarrow 2x \text{ smaller than } R_{1/2,1.6\mu m}$ and comparable with optical sizes of massive quiescent galaxies

• All 12 galaxies are $\log(M_*/M_{\odot}) > 11$

Table 2

- \rightarrow Star formation preferentially occurs in the compact central region
- \rightarrow Have potential to change morphology from disk-dominated to bulge-dominated
- 86% (12/14) massive galaxies are detected and have compact dust emission
 - → Massive galaxies commonly form stars in the extremely compact central region (9/14 have $R_{1/2,870\mu m} < 1.5 \text{ kpc}$)

→ These results agree with previous results (Barro+2016; pre-selecting optically compact SFGs)

3D-HST ID	$n_{1.6\mu m}$ ^a	$R_{1/2,1.6\mu m}^{a}$	$R_{1/2,870\mu m}^{b}$ b	$\log \Sigma M_{*1 \rm kpc}^{\rm c}$	$\log \Sigma SFR_{1 kpc}^{d}$	$\log \tau_{\rm bulge}^{\rm e}$	$\log \tau_{\rm depl}{}^{\rm f}$
		(kpc)	(kpc)	$M_{\odot} \mathrm{kpc}^{-2}$	$M_{\odot} \mathrm{yr}^{-1} \mathrm{kpc}^{-2}$	(yr)	(yr)
U4-13952	2.2 ± 0.2	3.6 ± 0.2	2.3 ± 0.5	9.63 ± 0.15	1.00 ± 0.23	8.96 ± 0.26	8.56 ± 0.31
U4-34817	0.6 ± 0.6	5.0 ± 0.5	3.1 ± 1.0	9.17 ± 0.15	0.93 ± 0.30	9.14 ± 0.30	$8.48 {\pm} 0.31$
U4-20704	3.4 ± 0.2	5.8 ± 0.8	4.0 ± 0.9	9.83 ± 0.15	0.72 ± 0.26	$8.96 {\pm} 0.41$	8.55 ± 0.31
U4-28702	1.2 ± 0.5	2.5 ± 0.3	1.0 ± 0.3	9.45 ± 0.15	1.28 ± 0.22	8.79 ± 0.23	8.52 ± 0.31
U4-36247	0.5 ± 0.4	2.9 ± 0.3	$0.6 {\pm} 0.2$	$9.68 {\pm} 0.15$	1.76 ± 0.20	8.19 ± 0.25	$8.39 {\pm} 0.31$
U4-32351	$1.9 {\pm} 0.8$	2.6 ± 0.2	$1.4 {\pm} 0.6$	9.56 ± 0.15	1.28 ± 0.24	8.74 ± 0.26	$8.49 {\pm} 0.31$
U4-16795			$1.0 {\pm} 0.1$	$9.38 {\pm} 0.15$	$1.81 {\pm} 0.20$	8.29 ± 0.21	$8.34 {\pm} 0.31$
U4-34138	1.2 ± 0.2	5.8 ± 0.4	0.6 ± 0.2	9.41 ± 0.15	1.55 ± 0.21	8.55 ± 0.21	$8.41 {\pm} 0.31$
U4-28473	1.5 ± 1.2	2.4 ± 0.5	1.2 ± 0.1	9.73 ± 0.15	1.73 ± 0.20	$8.16 {\pm} 0.27$	$8.37 {\pm} 0.31$
U4-33135	1.0 ± 2.1	1.5 ± 0.8	0.8 ± 0.2	9.76 ± 0.15	1.36 ± 0.21	$8.50 {\pm} 0.29$	$8.49 {\pm} 0.31$
U4-16504	$1.0 {\pm} 0.8$	3.1 ± 0.8	1.4 ± 0.2	9.46 ± 0.15	1.43 ± 0.21	$8.64 {\pm} 0.22$	$8.44 {\pm} 0.31$
U4-34617	$0.9 {\pm} 0.3$	5.0 ± 0.7	0.3 ± 0.2	9.17 ± 0.15	1.76 ± 0.20	$8.40 {\pm} 0.20$	$8.35 {\pm} 0.31$

4. Bulge Formation in Extended, Rotating Disks

Massive (log(M_*/M_ \odot)>11) galaxies in this study are likely to soon quench

→ Centrally-concentrated star formation reduces the half-light radii or half-mass radii & their Sersic index would increase by central bulge formation

Possibility of bulge formation

Dense core of quiescent galaxies : $log(\Sigma M_{*,1kpc}/M_{\odot}kpc^{-2})=10$ Bulge formation timescale

$$\tau_{\rm bulge} = \frac{10^{10} - \xi M_{*,1\rm kpc}}{\xi \times \Sigma SFR_{1\rm kpc}}$$

Resolved SED fitting with multi-band HST data

Distribute Spitzer/Herschel-based total SFR to the part of galaxies with best-fit exponential models at 870 µm

Mass loss due to stellar winds: w = 0.6 ——

- $\rightarrow \langle \log \tau_{\rm bulge} \rangle = 8.47 \ (8.16 8.79)$ for the 9 galaxies
- \rightarrow Complete dense core formation by z=2

Gas depletion timescale

Updated version of Genzel+2015 scaling relation (Tacconi+2018) $log(M_{gas}/SFR) = 0.15 - 0.79 log(1 + z) - 0.43 log(sSFR/sSFR_{MS}) + 0.06 log(M_* - 10.5)$ $\rightarrow \tau_{depl} = \frac{M_{gas}}{SFR(1+\eta)}, \ \eta \sim 1 \ (gas ejected by outflows)$ $\langle \tau_{bulge} / \tau_{depl} \rangle \sim 1.2 \ for 9 \ galaxies \rightarrow The \ formation \ of a \ dense \ core \ doesn't \ require \ additional \ gas$

4. Bulge Formation in Extended, Rotating Disks

Kinematic properties

6 galaxies are both in KMOS^{3D} and in 870 µm size measurement

- They are all rotation-supported ($v_{rot}/\sigma_0 > 3$)
- Span a range of disk angular momenta from local spirals to ellipticals
- Broadly consistent with the sample of KMOS3D
- \rightarrow Not all galaxies with low angular momentum
- \rightarrow Compact nuclear dust components are caused by internal angular momentum redistribution

Halo mass

 $\log(M_{halo}/M_{\odot}) > 12$ (Burkert+2016; KMOS observations and a Monte-Carlo modeling)

- \rightarrow Virial shock suspend cold gas inflow
- \rightarrow Naturally quench after the dense core formation

Galaxies with compact dust emission would be a key population for morphological and star formation evolution from disks to quiescent spheroids

Galaxies with extended dust emission (remaining 3 galaxies)

- Two of them show $n_{Sersic} > 2 \rightarrow$ bulge is already formed
- \rightarrow Become large quiescent galaxies (mode dominant at a later epoch)

