Arxiv: 2011.13605

# Deep Extragalactic VIsible Legacy Survey (DEVILS): SED Fitting in the D10-COSMOS Field and the Evolution of the Stellar Mass Function and SFR- $M_{\star}$ relation

Jessica E. Thorne, <sup>1\*</sup> Aaron. S. G. Robotham, <sup>1,2</sup> Luke J. M. Davies, <sup>1</sup> Sabine Bellstedt, <sup>1</sup> Simon P. Driver, <sup>1</sup> Matías Bravo, <sup>1</sup> Malcolm N. Bremer, <sup>3</sup> Benne W. Holwerda, <sup>4</sup> Andrew M. Hopkins, <sup>5</sup> Claudia del P. Lagos, <sup>1,2</sup> Steven Phillipps, <sup>3</sup> Malgorzata Siudek, <sup>6,7</sup> Edward N Taylor, <sup>8</sup> Angus H Wright <sup>9</sup>

#### ABSTRACT

We present catalogues of stellar masses, star formation rates, and ancillary stellar population parameters for galaxies spanning 0 < z < 9 from the Deep Extragalactic VIsible Legacy Survey (DEVILS). DEVILS is a deep spectroscopic redshift survey with very high completeness, covering several premier deep fields including COSMOS (D10). Our stellar mass and star formation rate estimates are self-consistently derived using the spectral energy distribution (SED) modelling code ProSpect, using well-motivated parameterisations for dust attenuation, star formation histories, and metallicity evolution. We show how these improvements, and especially our physically motivated assumptions about metallicity evolution, have an appreciable systematic effect on the inferred stellar masses, at the level of  $\sim 0.2$  dex. To illustrate the scientific value of these data, we map the evolving galaxy stellar mass function (SMF) for 0 < z < 5 and the SFR- $M_{\star}$  relation for 0 < z < 9. In agreement with past studies, we find that most of the evolution in the SMF is driven by the characteristic density parameter, with little evolution in the characteristic mass and low-mass slopes. Where the SFR- $M_{\star}$  relation is indistinguishable from a power-law at z > 2.6, we see evidence of a bend in the relation at low redshifts (z < 0.45). This suggests evolution in both the normalisation and shape of the SFR- $M_{\star}$  relation since cosmic noon. It is significant that we only clearly see this bend when combining our new DEVILS measurements with consistently derived values for lower redshift galaxies from the Galaxy And Mass Assembly (GAMA) survey: this shows the power of having consistent treatment for galaxies at all redshifts.

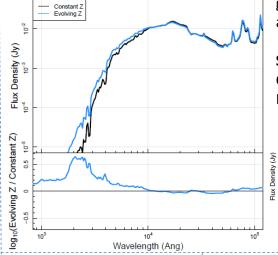
The variety in FUV-FIR SED: IMF, Dust correction, SFH, Metallicity, binary......

This work: ProSpect + **DEVILS** catalog → stellar mass, dust mass and SFRs

**DEVILS** is an on-going optical spectroscopic redshift survey (3,394 in COSMOS)

A new photometric catalogue for DEVILS is derived by using photometry code: ProFound

(Robotham et al. 2018).

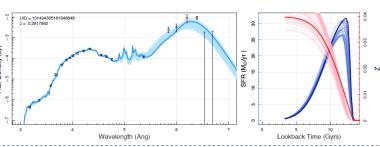

**About Redshift:** This results in 494,084 galaxies of which 24,099 have spec-z, 7,307 have grism-z, and the remaining: phot-z.

SED Modelling: Free parameter (advantage of ProSpect)

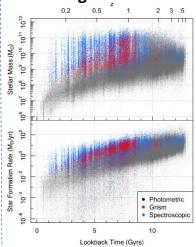
BC03 stellar libraries + Chabrier (2003) IMF

| Parameter           | Units                        | Type   | Range                 | Prior                                                                             | model + Dale et al. (2014)                           |
|---------------------|------------------------------|--------|-----------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|
| mSFR                | $M_{\odot} \mathrm{yr}^{-1}$ | Log    | [-3,4]                |                                                                                   | illouel + Dale et al. (2014)                         |
| mpeak               | Gyr                          | Linear | [-2, 13.38]           |                                                                                   | templates                                            |
| mperiod             | Gyr                          | Log    | $[\log_{10}(0.3), 2]$ | 100 erf (mperiod + 2)                                                             | - 100                                                |
| nskew               | -                            | Linear | [-0.5,1]              |                                                                                   | SFH: Robotham et al. (2020)                          |
| Zfinal              |                              | Log    | [-4, -1.3]            |                                                                                   | 3FH. RODULIIAIII Et al. (2020)                       |
| r <sub>birth</sub>  |                              | Log    | [-2.5, 1.5]           | $\exp\left(-\frac{1}{2}\left(\frac{\tau_{\text{birth}}-0.2}{0.5}\right)^2\right)$ | <ul> <li>mSFR - the peak SFR of the SFH,</li> </ul>  |
| rscreen             |                              | Log    | [-5, 1]               | $-20 \operatorname{erf} (\tau_{\operatorname{screen}} - 2)$                       | <ul> <li>mpeak - the age of the SFH peak,</li> </ul> |
| $\alpha_{ m birth}$ |                              | Linear | [0,4]                 | $\exp\left(-\frac{1}{2}\left(\frac{\alpha_{\text{birth}}+2}{1}\right)^2\right)$   | • mperiod - the width of the Normal distribution     |
|                     |                              | Lincon | [0.4]                 | $\alpha_{\text{screen}} + 2 \times 2$                                             | • mckow - the skewness of the Normal distribution    |

A linearly evolving metallicity:




This is similar to the closed-box model of metallicity growth, but the linear model allows for a reasonable amount of inflow


#### SED sample:

Catalog: No NB data + Exclude PAH bands

Right panel: Red line: Metallicity Blue line: SFR



### **SED fitting result:**



Redshift Source

**DEVILS** 

zCOSMOS

hCOSMOS

LEGA-C

VVDS

VUDS

FMOS

C3R2

LRIS

MOSDEF

DEIMOS

ComparatOI

VIS3COS

3D-HST

PRIMUS

COSMOS2015

MIGHTEE

Dust: Charlot & Fall (2000)

Type

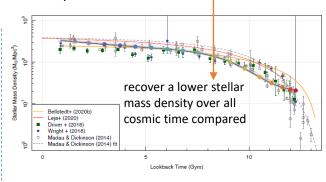
Spec

Grism

Grism Photo

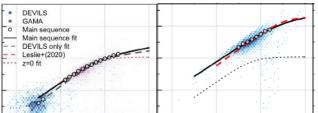
Photo

Stellar mass function (18 redshift bins, double Schechter)


$$\phi(\mathcal{M}) = \ln(10)e^{-\mu} \left( \phi_1^* \mu^{\alpha_1 + 1} + \phi_2^* \mu^{\alpha_2 + 1} \right) \quad \alpha_1 \sim -0.5, \ \alpha_2 \sim -1.5$$

This Work DEVILS only (z<0.56)

Characteristic mass &  $\alpha$ : no evolution over the redshift range Normalization: redshift-dependent evolution & **lower** fitted values


ProSpect-derived stellar mass are higher than COSMOS2015 by 0.21 dex, SFR are lower by 0.05 dex.

3.25 < z < 3.



## **SFMS:** (20 redshift bins) Turnover at $\sim 10^{10}~M_{\odot}$ , $\alpha \sim 1, \beta \sim 0.2$

0.02 < z < 0.0



 $\log_{10}(SFR) = S_0 - \log_{10} \left[ \left( \frac{10^{\mathcal{M}}}{10^{\mathcal{M}_0}} \right)^{-\alpha} + \left( \frac{10^{\mathcal{M}}}{10^{\mathcal{M}_0}} \right)^{-\alpha} \right]$ 

The shape of the main sequence evolves with redshift Bend: massive galaxies start to undergo quenching at z < 1.5.