UV & U-band luminosity functions from CLAUDS and HSC-SSP -I. Using four million galaxies to simultaneously constrain the very faint and bright regimes to $z \sim 3$

Thibaud Moutard,^{1*} Marcin Sawicki,^{1,2}⁺ Stéphane Arnouts,³ Anneya Golob,¹ Jean Coupon,⁴ Olivier Ilbert,³ Xiaohu Yang,⁵ Stephen Gwyn²

ABSTRACT

We constrain the rest-frame FUV (1546Å), NUV (2345Å) and U-band (3690Å) luminosity functions (LFs) and luminosity densities (LDs) with unprecedented precision from $z \sim 0.2$ to $z \sim 3$ (FUV, NUV) and $z \sim 2$ (U-band). Our sample of over 4.3 million galaxies, selected from the CFHT Large Area U-band Deep Survey (CLAUDS) and HyperSuprime-Cam Subaru Strategic Program (HSC-SSP) data lets us probe the very faint regime (down to $M_{\rm FUV}$, $M_{\rm NUV}$, $M_{\rm U} \simeq -15$ at low redshift) while simultaneously detecting very rare galaxies at the bright end down to comoving densities $< 10^{-5}$ Mpc⁻³. Our FUV and NUV LFs are well fitted by single Schechter functions, with faint-end slopes that are very stable up to $z \sim 2$. We confirm, but self-consistently and with much better precision than previous studies, that the LDs at all three wavelengths increase rapidly with lookback time to $z \sim 1$, and then much more slowly at 1 < z < 2-3. Evolution of the FUV and NUV LFs and LDs at z < 1 is driven almost entirely by the fading of the characteristic magnitude, M_{UV}^{\star} , while at z > 1 it is due to the evolution of both M_{IIV}^{\star} and the characteristic number density ϕ_{IIV}^{\star} . In contrast, the U-band LF has an excess of faint galaxies and is fitted with a double-Schechter form; $M_{\rm II}^{\star}$, both $\phi_{\rm II}^{\star}$ components, and the bright-end slope evolve throughout 0.2 < z < 2, while the faint-end slope is constant over at least the measurable 0.05 < z < 0.6. We present tables of our Schechter parameters and LD measurements that can be used for testing theoretical galaxy evolution models and forecasting future observations.

Data:

- CFHT-CLADUS $U_{AB} = 27.1(18.60 \text{ deg}^2), 27.7(1.36 \text{ deg}^2) 0.92''$ (Sawicki 2019, release: 2020)
- g,r,i,z,y HSC-SSP-PDR1 (public) 26.6(g) to 24.2(y) best seeing: 0.62"(i) E-COSMO

Redshift bin

0.05 < z < 0.3

0.3 < z < 0.45

0.45 < z < 0.6

0.6 < z < 0.9

0.9 < z < 1.3

1.3 < z < 1.8

1.8 < z < 2.5

2.5 < z < 3.5

0.05 < z < 3.5

Redshift.