

DAICHI KASHINO (D.¹ SIMON, I) LIISY (D. 1011) SHURMAN (D.^{2,3} ALVIO RENZINI (D.⁴ EMANUELE DADDI (D.⁵ SANDRO BARBHLII (D.⁶ OLGA CUCCIAN (D.⁴) IEXHAN SHKARMUTEPE (D.⁷ VINCENZO MAINIERI (D.⁸ ROSER PELLÓ (D.⁹) YING-HE PENO^{10, 11} DAVID SANDERS (D.⁴) AND ELENA - 8

zCOMSMOS Z=1.3-1.3 SFG 505天体のrest-UV spectraから2175A 吸 収バンプを検出した。

2175Aバンプ:

- 銀河系やLMC, M31などで検出されているrest-UCCの広い吸収プロファイル。SMCでは見えていない。
- 炭素質のsmall-grain表面での炭素のsp² bondの共鳴吸収があそらくはキャリア
- Z=1-2.5のスペクトルの30%くらいには見られる(Noll+09的)^{fellor moss} [M]

サンプル銀河 (Fig4)

- M*=1e9.5-11Msun
- SFR=10-100Msun/yr => sSFR=1-10/Gyr

Excess extinction 検出手法

- 5BBF+8MBFからSED fit
- 2パラメータ評価;
 - γ34 = 2175A前後のスペクトルのPower Law indexの差
 - βb = UVスペクトルの傾き(reddening指標)
- それらをスタックして、同じくスタックしたスペ クトルと比較 (Fig8) 2011
 - $\beta \gamma$ 関係 : $\gamma_{34} = \frac{220}{3} \frac{9}{\beta_b} 4.16$.
 - LMCとSMCの中間にくる(Fato)

Figure 7. The β_b versus γ_{34} diagrams for model spectra.

Table 1. UV bump parameters^a

Sample	N	$\langle \gamma_{34} \rangle_{\text{med}} b$	$\langle M_* \rangle_{\rm med}^{\ C}$	$\langle sSFR \rangle_{med}^{} d$	$\langle E_{\text{best}}(B-V) \rangle^{e}$	$\gamma \ [\mu m^{-1}]^{f}$	w_{λ} [Å]	B_k	B_A [mag]
all	505	-1.020	0.285	10.177	-8.782	0.536 ± 0.023	254 ± 10	0.577 ± 0.013	0.156 ± 0.004
γ_{34} -bin_1	84	-3.389	10.499	-8.838	0.361	0.482 ± 0.017	228 ± 8	0.847 ± 0.016	0.300 ± 0.006
γ_{34} -bin_2	84	-2.234	10.300	-8.783	0.309	0.518 ± 0.020	245 ± 9	0.734 ± 0.016	0.227 ± 0.005
γ_{34} -bin_3	84	-1.407	10.248	-8.791	0.286	0.498 ± 0.023	236 ± 10	0.642 ± 0.016	0.180 ± 0.004
γ_{34} -bin_4	84	-0.678	10.121	-8.744	0.263	0.512 ± 0.032	243 ± 15	0.534 ± 0.018	0.134 ± 0.005
γ_{34} -bin_5	84	0.047	9.984	-8.783	0.237	0.567 ± 0.047	269 ± 22	0.419 ± 0.018	0.095 ± 0.004
γ_{34} -bin_6	85	0.918	10.019	-8.745	0.256	1.264 ± 0.182	609 ± 90	0.254 ± 0.017	0.060 ± 0.004
M_* -bin_1	84	-0.118	9.754	-8.768	0.190	0.426 ± 0.043	201 ± 20	0.515 ± 0.029	0.093 ± 0.005
M_* -bin_2	84	-0.285	9.964	-8.721	0.242	0.483 ± 0.039	229 ± 18	0.492 ± 0.022	0.115 ± 0.005
M_* -bin_3	84	-0.805	10.100	-8.790	0.262	0.470 ± 0.028	223 ± 13	0.534 ± 0.017	0.134 ± 0.004
M_* -bin_4	84	-1.302	10.255	-8.780	0.283	0.585 ± 0.028	277 ± 13	0.619 ± 0.016	0.171 ± 0.004
M_* -bin_5	84	-1.806	10.450	-8.790	0.326	0.556 ± 0.020	264 ± 9	0.669 ± 0.013	0.213 ± 0.004
M_* -bin_6	85	-2.013	10.800	-8.853	0.408	0.602 ± 0.023	286 ± 10	0.595 ± 0.012	0.235 ± 0.005

