The Interstellar Medium in [OIII]-selected Star-forming Galaxies at z~3.2

Suzuki + 2017, APJ 849 39

Arxiv: 1709.06731

Presenter: N.Chen

Structure:

- Abstract [1]
- Introduction [1]
- Sample Selection, Observations, and Reduction [4]
- ISM Conditions of [OIII] Emitters among Other Samples at z > 3 [3]
- Comparison with Star-forming Galaxies at z ~ 2 [3]

Abstract

- Keck/MOSFIRE: [OIII] galaxies at z ~ 3.2
- Gas metallicity: $\begin{cases} Low stellar mass: 12 + log(O/H) = 8.07 \pm 0.07 \\ High stellar mass: 12 + log(O/H) = 8.31 \pm 0.04 \end{cases}$
- No systematic bias in the selection of star-forming galaxies. (Compare to UV, $Ly\alpha$)
- Ionization parameters and gas metallicities are similar to SFG at $z\sim2$

 \rightarrow No strong redshift evolution in the ISM conditions

 \rightarrow SFR at a fixed stellar mass also do not significantly change

 The stellar mass is the primary quantity to describe the evolutionary stages of individual galaxies at z > 2

Introduction

- High-z galaxies have different ISM conditions comparing to local galaxies
 - On BPT-diagram, high-z has higher [O III]/H β ratios with respect to [N II]/H α
 - On Mex-diagram, high-z has higher [O III]/H β ratios at a fixed stellar mass
 - A result of lower gas metallicities, higher ionization parameters, harder spectra of ionizing sources
- M_* —gas metallicity relation: SFG at high-z have lower gas metallicities at a fixed mass
- Strong emission line ratios \rightarrow gas metallicities is probably not suitable for high-z
- Studies of ISM and M_* —gas metallicity is important at z > 3 because the cosmological inflow is prominent. Metal content can reflect inflow/outflow processes.
- SFGs at z > 3 has limited sample sizes and sample bias (UV-selected, less dusty systems)
 → rest-frame optical emission lines (ELGs)
- HST/H-band grism: $z \sim 1-2$ ELGs, low mass, starburst with [O III]/H $\beta \ge 5$ (similar to LAEs)
- NB filter: SFGs at high-z show brighter [O III] emission lines and can be observable
- [O III]——SFMS at z > 3; [O III] ELGs have similar M_* , SFR, Dust extinction as H α at z ~ 2.2 \rightarrow [O III] can be a tracer of SFGs at high-z
- This paper: [O III] at z \sim 3.24 selected by COSMOS-HiZELS, KECK/MOSFIRE H and K-band

Sample Selection, Observations, and Reduction

1. Selection of candidate at $z\sim3.24$

- HiZELS (NB surveys, UKIRT and Subaru) —COSMOS2015 catalog (NB_K , 2.121µm)
- Selection: NB to BB, Σ is introduced to quantify the significance of an NB excess relative to 1σ photometric error

$$\Sigma = \frac{1 - 10^{-0.4(K - \text{NB})}}{10^{-0.4(ZP - \text{NB})} \sqrt{\pi r_{ap}^2 (\sigma_{\text{NB}}^2 + \sigma_K^2)}}, \qquad \qquad \text{EW}_{\text{rest}} = \Delta_{\text{NB}} \frac{f_{\text{NB}} - f_{\text{BB}}}{f_{\text{BB}} - f_{\text{NB}} (\Delta_{\text{NB}} / \Delta_{\text{BB}})},$$

- Criteria: Σ > 3 and EW_{rest} > 19 Å, 2.8 < z_{phot} < 4.0
- 174 [O III] NB candidates emitters at z \sim 3.24 in COSMOS
- 2. H and K Band Spectroscopy with Keck/MOSFIRE
 - R = $\lambda/\Delta\lambda \sim 3600$, Slit width ~ 0".7, 120 mins—K-band, 90 mins—H-band, FWHM ~ 0".7—1".0
 - First detection: 10 NB candidates + 10 photometric sources with K < 24 mag at $3.0 < z_{phot} < 3.5$
- 3. Data reduction and Analyses
 - Pipeline: MosfireDPR
 - Telluric correction & flux calibration: AOV star, HIP43018

- All 10 candidate emitters show [O III] doublets (100% detection) at $z = 3.23 3.27 + H\beta + [O II]$
- 7 photometric targets shows [O III] doublets (70% detection)
- The Correction factors for different seeing conditions in H (1.22 ± 0.04) and K (0.89 ± 0.03) bands
- Calculating emission line fluxes: Gaussian fitting by SPECFIT
 - Assuming [O III] λ 5008/[O III] λ 4960 = 3.0, Zspec is calculated by 5008.24Å, velocity dispersion
 - Fitting H β and [O II] and weak lines HeII, [Ne III]
- [O III] $\lambda 5008$ with S/N > 20, and H\beta, [O II], Ne[III] S/N > 3
- Velocity dispersion (140-310 km/s) \rightarrow No AGN

4. Stellar Absorption Correction for $H\beta$

$$F_{\mathrm{H}\beta,\mathrm{corr}} = F_{\mathrm{H}\beta,\mathrm{obs}} + 2 \,(\mathrm{\AA}) \times (1+z) \times f_c,$$

• Correction factors $\,\sim 1.0{-}1.2$

- 5. Estimation of Physical quantities
 - SED fitting: EAZY + FAST for 14 photometric bands in the COSMOS2015 catalog with emission lines subtraction ([O III], H β , [O II])
 - SED models: Fixed Zspec, IMF: Chabrier 2003, Dust extinction: Calzetti 2000, Exponentially declining SFH, 3 Metallicities
 - SFR_{SED} UV continuum (SED fitting result) Dust extinction correction: $A_{FUV} = 3.4 + 1.6\beta$. β is the UV slope $f_{\nu,int} = f_{\nu,obs} = 10^{0.4A_{FUV}}$.
 - SFR_{UV} is derived from r-band $SFR_{UV} (M_{\odot} \text{ yr}^{-1}) = \frac{4\pi D_L^2 f_{\nu,\text{int}}}{(1+z) \times 8 \times 10^{27} (\text{erg s}^{-1}\text{cm}^{-2}\text{Hz}^{-1})}$ $= \frac{L(1600\text{\AA})}{8 \times 10^{27} (\text{erg s}^{-1}\text{Hz}^{-1})}, \ /1.7 \text{ (Chabrier IMF)}$
 - SFR_{SED} shows + 0.25dex over SFR_{UV}
 - $SFR_{H\alpha}$ from H β , dust correction from UV slope + Calzetti 2000, with H α /H β =2.86, E(B-V)nebular = E(B-V)stellar

 $\log(SFR_{H\alpha}/M_{\odot} \text{ yr}^{-1}) = \log(L_{H\alpha}/\text{erg s}^{-1}) - 41.27.$

• $SFR_{H\alpha}/SFR_{UV} = 1.6\pm0.2$ (due to dust correction based on UV- β)

6. Stellar Mass-SFR Relation

- No bias compare to the parent sample \rightarrow normal SFGs [O III] at z ~ 2.23 are from NB_H (117)
- [O III] emitters at $z\sim2.23$ and 3.24 show similar SFRs
- [O III] emitters at $z \sim 3.24$ tend to have lower mass
- 7. Stacking Analysis
 - 10 [O III] emitters $\begin{cases} 9.76 < \log(M_*/M_{\odot}) < 10.21 \\ 9.07 < \log(M_*/M_{\odot}) < 9.23 \end{cases}$
 - Stacked spectra

ISM Conditions of [OIII] Emitters

1. Line Ratios and M_* dependence at z > 3

- $R_{23}(([OIII] + [OII])/H\beta)$ ratio to [OIII]/[OII] ratio + Model from **MAPPING V**
- R_{23} sensitive to gas metallicities, [OIII]/[OII] sensitive to ionization parameter

Result:

- Compare to SDSS data (local)
 High-z SFGs have higher [OIII]/[OII] ratio
 The ionization states of high-z SFGs are higher
- Massive [O III] emitters → SFGs
- Low mass [O III] emitters → LAEs
 The selection based on the [O III] emission
 line strength does not cause any significant
 bias in terms of the ISM conditions

Onodera: UV-SFGs

2. Metallicity Estimation with the Empirical Calibration Method

The empirical relations between the gaseous metallicities and six line ratios (Curti et al. 2017)

- [O III], Hβ, [O II] S/N > 3
- 4 line ratios \rightarrow best-fit metallicity

$$\chi^{2} = \sum_{i=1}^{N} \frac{(\log R_{i,\text{obs}} - \log R_{i,\text{fit}})^{2}}{\sigma_{i,\text{obs}}^{2} + \sigma_{i,\text{int}}^{2}},$$

Table 2. Best-fitting coefficients and rms of the residuals for calibrations of metallicity diagnostics given by equation (5). The σ parameter is an estimate of the dispersion along the log(O/H) direction in the interval of applicability given in the *Range* column.

Diagnostic	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	rms	σ	Range
R_2	0.418	- 0.961	- 3.505	-1.949		0.11	0.26	7.6 < 12+log(O/H) < 8.3
R_3	-0.277	- 3.549	- 3.593	-0.981		0.09	0.07	$8.3 < 12 + \log(O/H) < 8.85$
O ₃₂	-0.691	-2.944	-1.308			0.15	0.14	7.6 < 12+log(O/H) < 8.85
R ₂₃	0.527	- 1.569	-1.652	-0.421		0.06	0.12	$8.4 < 12 + \log(O/H) < 8.85$
N_2	-0.489	1.513	-2.554	-5.293	-2.867	0.16	0.10	$7.6 < 12 + \log(O/H) < 8.85$
O_3N_2	0.281	- 4.765	-2.268			0.21	0.09	$7.6 < 12 + \log(O/H) < 8.85$

- The four line ratios of galaxies are well fitted by their empirical relations within 1σ errors.
- The physical conditions of H II regions do not evolve with redshifts at a fixed metallicity, this paper use the locally calibrated empirical relations to estimate gas metallicities

- 3. Mass-Metallicity relation at z > 3
 - More massive galaxies have higher metallicities
 - No difference between [O III] emitters and UV-selected SFGs at mass range $9.0 < \log(M_*/M_{\odot}) < 10.2$
 - A larger sample and a larger massive range is required for comparison

Figure 7. Relation between stellar mass and gas metallicity for our sample at $z \sim 3.2$ and the UV-selected galaxies at $z \sim 3-3.7$ from Onodera et al. (2016). The solid curve represents the mass-metallicity relation at z = 0.07 (Maiolino et al. 2008). The dashed curve represents the best-fitted mass-metallicity relation at $z \sim 3.3$ from Onodera et al. (2016). Our targets are well below the mass-metallicity relation of the local star-forming galaxies. Comparing with the UV-selected galaxies at the same epoch, there is no clear difference of gas metallicities at a fixed stellar mass between the two samples. Our [O III] emitters follow the best-fitted relation by Onodera et al. (2016).

Comparison with Star-forming Galaxies at z ~ 2

- 1. Metallicity Calibration Based on Photoionization Modeling
 - Calibration model: KK04
 - A. Ionization parameter (q) to O_{32} (y=log(O_{32}))

```
\begin{split} \log(q) &= \{32.81 - 1.153y^2 + [12 + \log(\text{O/H})] \\ &\times (-3.396 - 0.025y + 0.1444y^2) \\ &\times \{4.603 - 0.3119y - 0.163y^2 \\ &+ [12 + \log(\text{O/H})](-0.48 + 0.0271y \\ &+ 0.02037y^2)\}^{-1}, \end{split}
```

- B. Gas Metallicity (12+log(O/H)) to R_{23} (x=log(R_{23})) 12 + log(O/H)_{upper} = 9.72 - 0.777x - 0.951x² - 0.072x³ - 0.811x⁴ - log(q) × (0.0737 - 0.0713x - 0.141x²)
 - $+ 0.0373x^3 0.058x^4),$

- Iterative manner of A and B
- [N II]/[O II] is needed to determine metallicity branch, this paper uses the upper branch

2. Comparison of the Ionization Parameter and Gas Metallicity

- Some sources have the same solution at the two branches, indicating that they lie at the crossover metallicity.
- The sample at z ~ 3.2 shows gas metallicities and ionization parameters similar to those of the LBGs at z~2–3 (Nakajima & Ouchi 2014)
- The redshift evolution of ISM conditions is unlikely to be strong between $z{\sim}3.2$ and $z{\sim}2$
- 3. Comparison of Mass–Metallicity Relation
 - Comparison at z ~ 2,
 - Cullen+14 (3D-HST grism, KK04), consistent Others PP04 to KK04, higher gas metallicity for former researches (Systematic differences due to correction)
 - The sample at z~3.2 has similar ionization parameters and gas metallicities as star-forming galaxies at z~2 at a fixed stellar mass under the same calibration method.

- 4. ISM Conditions and Star-forming Activity between z \sim 3.2 and z \sim 2
 - From 2.6 and 4.1 & 4.2, the properties of star-forming galaxies at z~ 2.0–3.2 (the difference of cosmic age of ~1.3 Gyr) are primarily determined by their stellar masses rather than cosmic epoch.
 - The individual galaxies should experience significant growth in their stellar masses

 \rightarrow gas accretion is really strong at that epoch

• Onodera et al. (2016) shows a similar result

It needs supports from the gas mass measurement to get the inflow and outflow of gas and constrained gas model.