Reconstructing the Observed Ionizing Photon Production Efficiency at z ~ 2 Using Stellar Population Models

Nanayakkara+2020, APJ

Arxiv: 2001.02693

Presenter: N.Chen

Structure:

- Abstract [1]
- Introduction [2]
- Sample Selection and Results [2]
- Analysis [5]
- Discussion [4]

Abstract

- *ξ*_{*ion*}: ionizing photon production efficiency
 - A key to the completion of the reionization of the Universe
- KECK/MOSFIRE (ZFIRE) and ZFOURGE
- 130 H α emitters at z ~ 2

Mass: $9.0 < \log(M_*/M_{\odot}) < 11.5$

Ionizing efficiency (median): $\log(\xi_{ion}[Hz/erg]) = 24.8 \pm 0.5$ (a typical value at z ~ 2 Universe)

- BPASSv2.2.1 and Starburst99 stellar population models
 - Model galaxies with same degree of ionizing efficiency (< 25.0) and parametric star-formationhistories (SFHs) have low Hα EW and redder colors
 - If star-bursts were introduced to SFHs make up this dispersion but random distribution of starbursts in evolutionary time are unlikely to explain the observed distribution
- 1. Our observed sample is specially selected based on their past SFH 🖌
- 2. Stellar models require additional mechanisms

Introduction

- The reionization of the Universe starts at z = 20 ~ 6
 - The escape of ionizing photons (Lyman continuum leakage) from young stars
- ξ_{ion} : the production rate of Lyman-continuum photons (λ photon < 912 Å) per unit Ultra-Violet (UV) continuum luminosity measured at 1500 Å.
 - A measure of hydrogen ionizing to non-ionizing photon production rates
 - ightarrow the ratio of massive to less massive stars in stellar populations
- ξ_{ion} + UV luminosity density + escape fraction of ionizing photons \rightarrow picture of how galaxies drove the reionization of the Universe
- Direct measurement of $\xi_{ion} \times$, alternatively the rest-UV continuum slope (β) $\rightarrow \xi_{ion}$
 - * β is also sensitive to dust, metallicity, and SFHs

• Dust free Case B recombination:

 $H\alpha$ emission \propto the number of Lyman continuum photons

- 2 Problems:
- $H\alpha$ contaminated by [NII]

 \rightarrow empirical or model calibrations (local) \leftrightarrow not suitable at z > 2 (line ratios evolving)

- Accurate dust corrections to UV and nebular H α flux require a combination of multi-wavelength photometry and Balmer line ratios
- \rightarrow Spectroscopic measurements are crucial

Sample Selection and Results

1. Survey description

- ZFIRE-COSMOS, all 134 (130) galaxies with H α detections (S/N > 5)
 - 1.90 < z < 2.67
 - 4 AGN contamination, $log(M_*/M_{\odot}) > 9.3$, Ks < 24.11, no biases compare to parent ZFOURGE sample.
- 2. ξ_{ion} computation and dust corrections

•
$$\xi_{ion} = \frac{N(H)}{L_{UV}} [Hz/erg]$$

- N(H) is the production rate of H ionizing photons per s
- L_{UV} is the intrinsic UV continuum luminosity at 1500 Å.
- L_{UV} is derived from ZFOURGE photometry using FAST++ (Schreiber et al. 2018b)
 - A power law function at 1400–1600 Å with slope β
 - BC03 + Chabrier03 + Truncated SFH (constant + exponentially declining) + Calzetti00 + Z=0.004 \sim 0.02
- N(H): dust free Case B, $n_e = 10^3 cm^{-3}$, T = 10000K [No escape of ionizing photons]

 $N(H) = \frac{L(H\alpha)}{C_B} [s^{-1}] \qquad C_B = 1.36 \times 10^{-12} erg$

- Balmer decrement: stack MOSFIRE H band observation or H $\!\beta$ detections

Set Name	N of galaxies	UV luminosity dust correction law	${ m H} \alpha$ luminosity dust correction law	Balmer decrement from	Median $\log_{10}(\xi_{ion} \text{ [Hz/erg]})$
Set A	130	Calzetti et al. (2000)	Cardelli et al. (1989)	$H\alpha$ SFR stacks	24.83 ± 0.49
Set A	130	Calzetti et al. (2000)	Cardelli et al. (1989)	β stacks	24.77 ± 0.43
Set A	130	Calzetti et al. (2000)	Cardelli et al. (1989)	UV magnitude stacks	24.73 ± 0.49
Set A	130	Calzetti et al. (2000)	Cardelli et al. (1989)	Stellar mass stacks	24.79 ± 0.44
Set A	130	Calzetti et al. (2000)	Cardelli et al. (1989)	$[O_{III}]\lambda 5007/H\alpha$ stacks	24.76 ± 0.45
Set A	130	Calzetti et al. (2000)	Cardelli et al. (1989)	UV+IR SFR stacks	24.68 ± 0.46
Set B	49	Calzetti et al. (2000)	Cardelli et al. (1989)	Individual observations	24.79 ± 0.58

- 3. The observed distribution of ξ_{ion}
 - A slight bias towards low ξ_{ion} compared to Shivaei + 2018 (MOSDEF)
 - 80% of the sample fall below log10(ξ_{ion} [Hz/erg]) = 25.2 (Robertson + 2013, reionize the Universe by z ~ 6)
 - Brown shading: BPASS model, with Z_{\odot} , binary star constant SFH

[differences in the stellar population/ISM properties, calibration uncertainties, and/or the choice of the dust attenuation curve]

- Compare to other research
 Tang + 2016: Low mass [OIII] emit
 Nakajima + 2018: Lyα emitters
- Lower than other z > 4 surveys
 A redshift evolution
 Biases in sample selection

Analysis

1. Observed correlation of ξ_{ion}

(a) A moderate negative correlation between β and ξ_{ion} (Such a trend has also been observed at $z \sim 2$ and at $z \sim 4$)

(b) No correlation between Muv and ξ_{ion} .

(c) A negative correlation between stellar mass and ξ_{ion}

But cannot make strong conclusions on the excess of ξ_{ion} in the lowest mass bin

(d) [OIII]/H α : 58 galaxies with [OIII] (S/N>3), Set B galaxies (detected H β) show a moderate positive correlation of ξ_{ion} with [OIII]5007/H α ratio. Galaxies with higher ionization parameters tend to have higher ξ_{ion}

(e) UV+IR SFR: Negative correlation in set A galaxies but no correlation in set B galaxies

(f) Hα SFR: Both set A and B galaxies show a statistically significant moderate positive correlation

- 2. Combining ξ_{ion} with H α EW and optical colors
 - Diagnostics of sSFR
 - Hα lines: young O-type stars with M > 20M Hα continuum: Red giant stars with 0.7 < M < 3
 UV continuum: O and B type stars with M > 3M [340]—[550] color: bluer to redder stars
 - \rightarrow H α EW, ξ_{ion} , [340]—[550] color are sensitive to the SFH/age of a stellar population and may make stronger constraints on the nature of the stellar populations.
 - 77 galaxies without contamination from surrounding objects
 - Using ZFOURGE photometry to calculate H α EW (Q: Why not directly use the MOSFIRE K band?)
 - Compare with 38 galaxies with confident K band continuums $\rightarrow \Delta \log_{10}(EW) = -0.02$

2.1 Simple parametric SFHs using BPASS stellar population models

Figure (a): there is a fraction of galaxies with lower H α EWs and/or bluer optical colors than what is expected from the BPASS models. [explained by random star-bursts over smooth SFHs] Figure (b): galaxies with higher H α EWs show higher ξ_{ion} values (diverge from H α EW < 2.25Å) Figure (c): galaxies with higher ξ_{ion} show slightly redder optical colors \rightarrow high ξ_{ion} system dominated by the older populations \rightarrow the relative strength of the star-burst compared to the past SFH should be low (if high ξ_{ion} caused by star-burst) Figure (b) and (c): the predicted ξ_{ion} values are consistently too high for the observed H α EW and rest-frame optical colors

• Simple parametric SFHs on average is accurate \rightarrow Star-burst contribution? (z ~ 2)

Burst Strength Burst Length

(Mvr)

Burst Time^a

(Myr)

Name

2.2 Star bursts using Starburst99 stellar population models

3 different burst scenarios

- Short star-bursts fail to reproduce the observed redder colors of the galaxies.
- Long lived bursts produce post starburst tracks that could explain a majority of galaxies with low ξ_{ion} and low H α EWs.
- By invoking star-bursts with varying strengths and lengths, the observed distribution at $z \sim 2$ could be reproduced.

Parameter change:

- The H α EW and ξ_{ion} increase rapidly to their maximum values within ~ 3Myr, while UV luminosity takes ~ 10 Myr to stabilize.
- H α timescale: ~ 10 Myr, UV timescale: ~ 100 Myr, 6565Å continuum timescales: few 100 Myr
- The [340]—[550] color: an almost instantaneous shift to blue colors at the onset of the starburst, then turn redder within a very short time-scale in the post star-burst phase.
- Metallicity have a weak influence
- Starburst ↔ Observation
 - 10000 sample simulation
 It is unlikely to preferentially observe
 galaxies with high Hα EWs, low ξ_{ion},
 and blue optical colors.
- Future work: SED-fitting based SFH

Discussion

1. Observed correlations of ξ_{ion}

- Enhancement of ξ_{ion} when $\beta < -1.5$, reach $\log(\xi_{ion}[Hz/erg]) = 25.2$ at $\beta = -2$
- Expected an continuous enhancement for galaxies with β < -2 (z > 6 galaxies have bluer UV slopes)
- An evolution of ξ_{ion} with UV magnitude is currently not favored → faint UV sources provide an additional contribution to reionization through elevated production of ionizing photons (UV Bright V.S. UV faint contribute to the reionization of the universe)
- Stellar mass: no constraints on whether there is an enhancement of ξ_{ion} at $\log(M_*/M_{\odot}) < 9.0$
- Shivaei + 2018, high R32, high [OIII]/H β , low N[II]/H α (high Ionizing parameter, low metallicity) \rightarrow high ξ_{ion} , can be explained by current physics
- ξ_{ion} is a proxy of sSFR. It is reasonable that ξ_{ion} shows a flat distribution with the SFR (SFMS)

• Additional discussion: dusty star-forming system ?

- 2. The completeness of our observed sample
 - EAZY derived UVJ color diagram (rest-frame)

The majority of galaxies used in this analysis are blue starforming systems.

The lack of red star-forming galaxies in sample may translate to a lack of galaxies with low sSFRs. (Low H α EW and Low ξ_{ion}). Still not able to explain the trends in model. In this paper, can rule out selection effects (?)

- 3. Dust related uncertainties
 - ~ 84% lower than $log(\xi_{ion}[Hz/erg]) = 25.2$
 - Similar to Shivaei + 18
 - The choice of the dust attenuation curve (< 0.2 dex errors)
 - Nebular and stellar components (extra extinction)
 - Need multiple Balmer emission line ratios

- 4. z evolution of ξ_{ion}
 - $z \sim 2$ measurements are ~ 0.5 dex smaller than that of $z \sim 4 \rightarrow$ redshift evolution \rightarrow Exponentially rising SFHs or star-burst at $z \sim 4$; Exponentially declining SFHs at $z \sim 2$ Starburst effect ? (would drive ξ_{ion} to increase rapidly, but...)
 - Model: the time window in which ξ_{ion} reach $\log(\xi_{ion}[Hz/erg]) > 25.5$ is very short
 - 4.1 Selection effects in high-z ξ_{ion} estimates
 - Difference in selection between z ~ 2 and z > 4 (Shim + 11, Bouwens + 16)
 - $z \sim 7$, extreme [OIII]+H β emitters \rightarrow high ξ_{ion} (not typical)
 - z > 4 photometry, bias to strong H α +[NII] (Spitzer/IRAC).
 - Hard ionizing radiation \rightarrow contamination from [NII] \rightarrow Overestimate of H α
 - z > 4 spectroscopy, selection bias
 - Need deeper spectroscopic explorations of the z > 4 Universe

4.2 Expectation from current stellar population models

- Kewley et al. 2019 current limitations of stellar population models.
- X-binaries and stripped stars increase the production of ionizing photons → such phenomenon are important in high-z galaxies
- Shallower slopes at the high mass end of IMF at high-z universe.
- $\rightarrow \xi_{ion}$ is reasonable to systematically increase with redshift

Model differences

- BPASS models show a higher ξ_{ion} at fixed metallicity compared to Starburst99 models
- BPASS: low Z \rightarrow high ξ_{ion}
- Starburst99: low Z \rightarrow low ξ_{ion} . (W-F stars effects, BPASS models even have W-F stars at low metallcity)