<u>Chile-Japan Academic Forum 2018</u> "Astronomy and Astronomical Instrumentation" (Nikko, 26-27/9/2018)

Galaxy cluster formation revealed by Mahalo-Subaru and Gracias-ALMA

Taddy Kodama (Tohoku Univ.) Mahalo-Subaru and Gracias-ALMA teams

CL0024 cluster (z=0.4), Subaru/S-Cam

Importance of proto-clusters in the cosmological context

In the cosmic noon (1<z<4), the universe and clusters form 50% and 75% of their total stellar masses, respectively.

The fractional contribution of (proto-)cluster progenitors to the total CSFRD is only 1% at z=0 but it increases to 20% at z=2 and 50% at z=10.

Proto-clusters are increasingly more important at higher redshifts.

MAHALO-Subaru

MApping HAlpha and Lines of Oxygen with Subaru

(PI: Kodama, T.) ~20 ninghts for imaging

Wide-Field Survey of Line Emitters ([OII], [OIII], Ha) of 14 known clusters at 0.4<z<3.6 and major general fields (CANDELS)

4 narrow-band filters FWHMs correspond to $\pm 1500-2000$ km/s 7 narrow-band filters

Advantages of NB-selected SFGs (HAEs, O3Es)

- 1. Nearly a complete sample of SFGs down to a certain line flux limit. (no pre-selection)
- 2. Redshifts are determined within a narrow slice only by imaging.
- 3. Less affected by dust extinction compared to UV-selected SFGs such as LAEs/LBGs.
- 4. Known redshifts/line fluxes are extremely useful for follow-up observations, such as NIR spectroscopy and ALMA line observations.

MAHALO-Subaru

MApping HAlpha and Lines of Oxygen with Subaru

Unique sample of NB-selected SF galaxies across environments and cosmic times

	environ-	target	z	line	λ	camera	camera NB-filter		status
	ment	1111 284 m			(µm)			nuum	(as of Apr 2015)
-	Low-z	CL0024+1652	0.395	$H\alpha$	0.916	Suprime-Cam	NB912	z'	Kodama+'04
	clusters	CL0939+4713	0.407	$H\alpha$	0.923	Suprime-Cam	NB921	z	Koyama+'11
$\angle > 1$		CL0016+1609	0.541	$H\alpha$	1.011	Suprime-Cam	NB1006	z'	not yet
clusters		RXJ1716.4+6708	0.813	$H\alpha$	1.190	MOIRCS	NB1190	J	Koyama+'10
				[OII]	0.676	Suprime-Cam	NA671	R	observed
		RXJ0152.7-1357	0.837	[OIII]	0.920	Suprime-Cam	NB921	z'	not yet
7~1 5	High-z	XCSJ2215-1738	1.457	[OII]	0.916	Suprime-Cam	NB912, NB921	z	Hayashi+'10, '12
Z~1.5	clusters	4C65.22	1.516	$H\alpha$	1.651	MOIRCS	NB1657	H	Koyama+'14
clusters		CL0332-2742	1.61	[OII]	0.973	Suprime-Cam	NB973	\boldsymbol{y}	observed
	_	ClGJ0218.3-0510	1.62	[OII]	0.977	Suprime-Cam	NB973	\boldsymbol{y}	Tadaki+'12
2 .	Proto-	PKS1138–262	2.156	$H\alpha$	2.071	MOIRCS	NB2071	$K_{\rm s}$	Koyama+'12
	clusters	HS1700 + 64	2.30	$H\alpha$	2.156	MOIRCS	BrG	$K_{\rm s}$	observed
z>2				[OIII]	1.652	MOIRCS	[Fe 11]	H	not yet
		4C23.56	2.483	$H\alpha$	2.286	MOIRCS	CO	$K_{ m s}$	Tanaka+'11
clusters		USS1558-003	2.527	$H\alpha$	2.315	MOIRCS	NB2315	$K_{\rm s}$	Hayashi+'12
		MRC0316-257	3.130	[O11]	2.539	MOIRCS	NB1550	H	not yet
-				[OIII]	2.068	MOIRCS	NB2071	$K_{\rm s}$	observed
	General	SXDF-CANDELS	2.16	$H\alpha$	2.071	MOIRCS	NB2071	$K_{\rm s}$	observed
	fields	(90 arcmin^2)	2.19	$H\alpha$	2.094	MOIRCS	NB2095	$K_{\rm s}$	Tadaki+'13
•			2.53	$H\alpha$	2.315	MOIRCS	NB2315	$K_{ m s}$	Tadaki+'13
z>2			3.17	[OIII]	2.093	MOIRCS	NB2095	$K_{\rm s}$	Suzuki+'14
field			3.63	[OIII]	2.317	MOIRCS	NB2315	$K_{\rm s}$	Suzuki+'14
neiu		COSMOS-CANDELS	2.16	$H\alpha$	2.071	MOIRCS	NB2071	$K_{ m s}$	partly observed
		(90 arcmin^2)	2.19	$H\alpha$	2.094	MOIRCS	NB2095	$K_{ m s}$	partly observed
		GOODS-N	2.19	$H\alpha$	2.094	MOIRCS	NB2095	$K_{ m s}$	Tadaki+'11
		(70 arcmin^2)		[OII]	1.189	MOIRCS	NB1190	J	observed

~23 nights for imaging, ~15 nights for spectroscopy

Kodama et al. (2013)

Panoramic narrow-band imaging by MAHALO-Subaru MApping HAlpha and Lines of Oxygen with Subaru

Enhanced SF (/AGN) activity in the densest "super-group" of the proto-cluster USS1558 at z=2.53 (b_{5th}<150kpc)

Evolution of integrated SFRs and growth of dynamical mass in cluster cores

Shimakawa et al. (2014b)

GRACIAS-ALMA

Galaxy Resolved Anatomy with CO Interferometry And Submm observations with ALMA

Mapping/resolving molecular gas and dust contents of high-z SF galaxies at 1.5<z<2.5 across various environments

CO line @ Band-3 (~100GHz)SFR~50M $_{\odot}$ /yr (~3hrs, 5 σ)
@1<z<3</th>Dust continuum@ Band-6,7,9 (450 µm–1.1 mm)SFR~15M $_{\odot}$ /yr (~0.5hr, 5 σ)

Spatial resolution: 0.2~1.5" (~1.5-12 kpc)

		Mahalo-Subaru			1	Grad	cias-ALMA	ALMA status
target Z~1	.5 z	line	μm	NB-filter	Camera	Continuum	Line@GHz(band)	proposals results
2215-1738	1.46	[OII]	0.916	NB912	S-Cam	B7,9	CO(2-1)@94 (B3)	Hayashi done (CO/dus
0332-2742	1.61	[OII]	0.973	NB973	S-Cam	B7,9	CO(2-1)@89 (B3)	not yet
0218.3-0510	1.62	[OII]	0.977	NB973	S-Cam	B7,9	CO(2-1)@88 (B3)	not yet
1138-262	2.16	$H\alpha$	2.071	NB2071	MCS	B6,7,9	CO(3-2)@110 (B3)	Koyama-I done (CO)
4C23.56	2.48	$H\alpha$	2.286	NB2288	MCS	B6,7,9	CO(3-2)@99 (B3)	Suzuki- done (CO/dus
1558-003	2.53	$H\alpha$	2.315	NB2315	MCS	B6,7,9	CO(3-2)@98 (B3)	Kodama done (CO/dus
SXDF	2.19	$H\alpha$	2.094	NB2095	MCS	B6,7,9	CO(3-2)@108 (B3)	Tadaki+ done
-CANDELS	2.53	$H\alpha$	2.315	NB2315	MCS	B6,7,9	CO(3-2)@98 (B3)	Tadaki+ (CO/dust)

 f_{qas} and SFE(=SFR/M_{gas}) are essential quantities to characterize the mode of SF.

CO(2-1) emission lines from 17 cluster members XCS2215 cluster (z=1.46) (>10¹⁰Msun)

Cluster phase space diagram XCS2215 cluster (z=1.46)

Gas rich galaxies seem to be recently accreted galaxies.

Hayashi et al. (2017)

Gas mass fraction (f_{gas}) and depletion time scale (τ) z~1.5 XCS2215 cluster (z=1.46)

 M_{gas} with Tacconi et al. (2018) recipe. $f_{gas} = M_{gas} / (M_{star} + M_{gas}) \quad \tau = M_{gas} / SFR$ Hayash

Hayashi et al. (2017)

See also COLDGASS project (Saintonge et al. 2011) for similar trend at z~0

Environmental dependence?

z~1.5 XCS2215 cluster (z=1.46)

Horizontal lines: *Scaling relation* by Tacconi et al. (2018) for *field galaxies (SFR, M*)* $f_{gas} = M_{gas} / (M_{star} + M_{gas})$ $\tau = M_{gas} / SFR$ Hayashi et al. (2017)

ALMA Band-3 observations of z=2-2.5 proto-clusters (all around HzRGs)

+ 4C23.56 (z=2.48)

Beam size = 59" diameter

O ALMA CO(3-2) detections O non detections

Tadaki et al. (2018)

Environmental dependence?

z~2.5

Horizontal lines: Scaling relation by Tacconi et al. (2018) for field galaxies (SFR, M*)

Larger gas fraction in proto-cluster galaxies compared to the general field due to the efficient cold gas accretion towards the intersections of the filaments?

Tadaki et al. (2018)

Dual NB emitter survey (Lya, Ha) of a proto-cluster at z=2.5

Low Ly α /H α ratios of galaxies in the cluster core \rightarrow HI gas is associated

Summary

- Mahalo-Subaru has been mapping LSSs around distant clusters at high redshifts and revealing star formation histories in clusters, such as the boosting of SF in a proto-cluster core (z~2.5) and the inside-out quenching of SF at z<2.</p>
- Gracias-ALMA is now detecting gas/ISM within the SFGs and its environmental dependence, such as higher gas fraction in protocluster cores (z>1.5), which may trigger high SF activities. Will resolve internal structures of galaxies and witness physical processes in action with high resolution observations.
- These results can be interpreted by abundant gas associated to proto-cluster core fed by cold streams.

