FACULTY OF PHYSICAL AND
VIATHEMATICAL SCIEMNCES
UNIVERSIDAD DE CHILE

Deep Learning for Image Seqguence
Classification of Astronomical
Events

Prof. Pablo Estévez, Ph.D., IEEE Fellow
Department of Electrical Engineering, Universidad de Chile
& Millennium Institute of Astrophysics, Chile

Joint work with Guillermo Cabrera-Vives, Francisco Forster, Rodrigo Carrasco ,
Pablo Huijse, Ignacio Reyes, Esteban Reyes, Nicolas Astorga et al.

Third Chile-Japan
Academic Forum



Contents

Deep-HITS Real/Bogus Clasiffier

Clustering using Deep Variational Embedding
Autoencoders

Recurrent Convolutional Neural Network
Sequential Classifier

Conclusions



2013 HITS dataset
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Deep-HITS Real/Bogus
Classifier: Sugervised Aggroach
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Detection Error Tradeoff (DET)
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Model Accuracy Precision Recall Fl-score
Deep-Hits (DH) 99.45+0.02 99.37+0.04 99.55+0.06 99.45+0.02
Deep-Hits + RelLU 99.47+4+0.02 99.44+40.04 99.52+0.06 99.47+0.02
Cyclic Avg. Pool (CAP) 99.524+0.01 99.4540.01 99.61+0.02 99.52+0.01
Cyclic Avg. Pool Ensemble (CAPE) 99.53+0.01 99.45+0.02 99.63+0.03 99.53+0.01
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Deep Variational Embedding (VADE)
é'utoencoder: Unsupervised Approach

VADE solves a clustering problem by setting a
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VADE Results on Real/Bogus
S

Method

Accuracy

Incremental PCA + GMM
Online DL + GMM
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Fig. 6. Reconstruction obtained by sampling from the VADE centroids fi..
The first and second rows correspond to clusters associated to the positive
class (stellar transient) and the negative class (artifacts), respectively.
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Deep Learning for Image Sequence
Classification of Astronomical Events

We propose a sequential classifier based on a
recurrent convolutional neural network (RCNN)

It uses sequences of images as inputs

This approach avoids the computation of light
curves or difference images

A basic assumption is that there is more
Information in the original images than in the
light curves, e.g. spatial information.

We use synthetic datasets to train the models,
and real data from the HITS survey to test them.

Carrasco-Davis, R.; Cabrera-Vives, G.; Forster, F., Estevez, P.A., Huijse, P., Protopapas, P., Reyes, I.,
Martinez-Palomera, J., and Donoso, C. “Deep Learning for Image Sequence Classification of
Astronomical Events”, submitted to PASP, 2018.
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Synthetic Dataset

First we simulate light-curves based on
physical and empirical models, and sample
them using the observation times.

Each point in a light curve Is transformed to an
Image by taking into account:

Instrument specifications

Exposure times

Atmospheric conditions
A given PSF (point spread function) is

assumed, which is sampled from a collection
of empirical PSFs.



Example of Image Simulation

Light curve simulation, sn example
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Synthetic Dataset (7 classes)

Table 2 Class description, astronomical sources simulated in this work.

Astronomical Object

Generation model

Simulations based on physical models of SNe IT from (Moriya et al., 2017)

S CIHOYaS and SN Ia spectrophotometric templates from (Hsiao et al., 2007)
RR Lyrac 483 light curve templat.es, sampling
a random phase and average magnitude (Sesar et al., 2010)
Cepheids 600 real cepheids light curve Hartman et al. (2006) fitted

with a Gaussian process for interpolation (Rasmussen & Williams, 2005)

Eclipsing Binaries

375 Eclipsing binaries templates from
CatSim!', part of the LSST simulation tools

Non-Variable objets

Constant brightness value
for each time of observation

Galaxies

Exponential and De Vaucouleur’s luminosity profile
using parameters from SDSS galaxy catalog (Blanton et al., 2017)

Asteroids

Simulated as a bright source
in just a single time of observation




Synthetic and Real Datasets

We simulated 686,000 objects for the training
set, 85,750 for the validation set and 85,750
for the test set.

In this work, the observing conditions were
sampled from real observations from the 2015
HITS survey.

Five classes are available for real image
sequences: supernovae (73), RR Lyrae (111),
eclipsing binaries (76), non-variables (255)
and asteroids (51).



Recurrent Convolutional Neural Network
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o Convolutional layers are able to automatically
learn the spatial correlation among pixels in the
Input images and extract high-level features.

0 ALSTM recurrent layer Is used to learn time
dependencies among images at irregular times.



Classification Process

0

T P Class Probability
Init state L t=2 state
A
/
ConvNet with
recurrence O
t=2
L

t=1 t=2

= = Input Tensor

=0

t=




Classification Process

0

T P Class Probability
t=2 state L t=3 state
A O
/ ‘= 3
ConvNet with
recurrence O
t=2
L

-
t=2 t=3

= = Input Tensor

=1

t=




Classification Process
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Classification Process
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Model performance on

synthetic data

7 RCNN model FATS (58 features) + RF
(Random Forests)

final accuracy, train: 0.965, val: 0.954, test: 0.960 FATS + random forest
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n°® images

Our model uses sequences of Light curves in count units were
images as inputs directly extracted from the simulated images

using optimal photometry.



Model evaluation on real data:
average results
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Conclusions

The proposed RCNN model uses sequences
of Images. Scales well since it has a constant
computational cost.

Domain adaptation is an important area of
research. Our model gets a very high
performance on the real dataset after fine
tuning. Just after presenting a few real
samples.

The proposed approach allows us to generate
datasets to train and test our RCNN model for
different astronomical surveys and telescopes.



Any Questions?
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