

G305: Looking into a stellar maternity with ALMA

Elise Servajean Universidad de Chile

Guido Garay, Jill Rathborne, Laura Gomez, Yanett Contreras

High mass stars

Form predominantly in clusters

Still a lot to understand

Which are the characteristics of the fragmentation at the early stages of evolution?

How and where are the most massive stars formed?

Looking into G305 with ALMA

Declination (J2000)

Looking into G305 with ALMA

12m + ACA 2" angular resol. 0.4 km/s vel. resol. Band 3: continuum molecular lines: HCO⁺, N_2H^+ , CS, ¹³CO

Continuum emission

11 cores: M_d : 4 - 50 M_☉ R : 0.007 - 0.025 pc

Fragmentation and CMF

Summary

- ALMA observations show that the clump fragments into several cores.
- Eleven self-gravitating cores were identified.
- The HV gas kinematics may be explained by global gravitational collapse of the clump.
- Based on the physical parameters some of the cores will form high mass stars.
- The expected total mass of the cluster is ~300 M_☉, but observed fragments should yield ~60 M_☉.
- Lack of small fragments suggests top-heavy CMF at the current fragmentation state.

SOCHIAS

CAZADORAS DE ESTRELLAS JORNADAS DE ASTRONOMIA PARA ALUMNAS DE ENSENANZA MEDIA

