Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

Toshikazu Onishi (Osaka Prefecture University)

ALMA Image: N159W

GMC as a site of high-mass star formation

From galaxy evolution to individual star formation

1-100pc GMCs: 10⁴ - 10⁶Mo $n(H_2) \sim 1000 \text{ cm}^{-3}$

Wide range of scales Various distances Use of various telescopes Clumps, Cores 10² - 10³Mo $n(H_2) \sim > 10^4 cm^{-3}$

<0.1 pc

Ikeda et al. 2007 H13CO+ mapping ~0.05pc resolution

GMAs: 10⁷Mo

Star formation in GMCs

Most stars form in GMCs

- K-S law: Gas surface density SF activities
 - Gas \rightarrow SF is a "key" to understand the galaxy's evolution
- ⋆ Key issue for galaxy evolution
 - ♦ GMC properties in the MW as templates
 - Some scaling relations (e.g., Solomon et al. 1987)
 - The samples are biased to the nearby GMC?
 - + Not a representative for the MW?
 - Magellanic Clouds + some local galaxies
 - Recent high resolution observations + "Uniform" sample
 - + Uniform sample of high mass formation from GMC scale down to core scale
 - bridging between MW GMCs and distant galaxies

High mass SF

- ⋆ Initial condition
 - Need high Jeans mass (effective a~10km/s)
 - Monolithic collapse? (McKee and Tan 2002)
 - Competitive mass accretion? (Bonnel et al. 2010)
 - Origin of IMF
 - Effect of the total mass of the cloud?
 - Origin of isolated high mass star: 20%?(Gies 1987)
- Rapid destructive process

Information on natal clouds dissipates very fast.

Progress

- High precision (large aperture) telescopes with sensitive receivers installed
 - ♦ NANTEN2 4m
 - NRO 45m, IRAM 30m
 - ♦ ASTE 10m, APEX 12m
- Sensitive receivers at higher freq. and telescopes at high site
 - ♦ CO (J=2-1,3-2,4-3,6-5,7-6,...)
- * ALMA
 - ♦ Spatial scale: 0.01 ~ 100 arcsec
 - Band 6 and Band 7 observations of external galaxies
 - Highly efficient

Galactic plane surveys

- * Sites of high-mass star formation in the Galaxy.
- * CO, ¹³CO, C¹⁸O, J=1-0: Mass tracers
- * J=2-1, 3-2 lines: Density, temperature dependent
- * Angular resolution: 3 arcmin
 - NANTEN2 4m: ¹²CO(1-0), ¹³CO(1-0), Entire Southern Sky
 - ♦ Osaka 1.85m at NRO: ¹²CO(2-1), ¹³CO(2-1), C¹⁸O(2-1), Northern sky
- ⋆ Angular resolution: better than ~1'
 - ♦ FCRAO 14m: ¹³CO(1-0), 55.7°>L>18°, |b|<1°</p>
 - ♦ Mopra 22m: ¹²CO(1-0), ¹³CO(1-0), C¹⁸O(1-0), 358°>L>300°, |b|<0.5°</p>

 - ♦ NRO 45m: ¹²CO(1-0), ¹³CO(1-0), C¹⁸O(1-0), 50°>L>10°, 236°>L>198°, |b|<1°</p>

CO three lines

~JCMT CO(3-2) resolutions R ¹²CO(1-0), G ¹³CO(1-0), B C¹⁸O(1-0)

Why filamentary clouds?

To understand roles of filaments in SF are quite important!

(e.g., Inutsuka & Miyama 1997, Arzoumanian et al. 2010, André et al. 2014)

Spatially resolved observations (<0.1 pc) of filaments in (galactic) massive star-forming regions are very rare so far... $10^{10^{11}}$ Jy/8"-beam 10^{2}

Resolution = 8"(~0.07 pc), Width ~ 0.15 pc, Line mass ~ 500 – 2000 M_{\odot} /pc

Possible formation mechanisms of massive filaments :

- Recent large-scale compression
- Dynamically supported by accretion driven MHD waves

(André et al. 2016)

Sites of the massive star formation by CCC

- PASJ Special Issue : CCC (May 2018)
- Single O star formation
 - Spitzer bubbles (RCW79, N35, etc.)
 - UCHII region (RCW166 : Ohama+18b)
- Galactic mini-starbursts
 - NGC6334+NGC6357 (Fukui+18b)
- High-mass star cluster formation
 - M17 (Nishimura+18), W33 (Kohno+18)
 - Vela region (Sano+18, Hayashi+18, Enokiya+18)

Spitzer bubbles

ALMA

Magellanic Clouds

- > D~ 50 kpc (one of the nearest)
- > Different environment from the MW.
 - > High gas-dust ratio
 - Low metallicity
- Active star formation
 - Massive star formation
 - Young populous clusters

The Large Magellanic Cloud

© ROE/AAO The Small Magellanic Cloud

UKS 17

N159: One of the largest GMCs in the LMC 10⁷Mo, 220pc, Four young clusters (age <10Myr) ALMA observations: Cycles 1 and 4

Dec (J2000)

Massive star formation by cloud-cloud collisions

3-D MHD simulation with self-gravity of colliding clouds Inoue & Fukui 2013

Large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer

Moment 0 map (${}^{12}CO(J = 2-1)$)

Moment 0 map ($^{13}CO(J = 2-1)$)

Channel map (${}^{12}CO(J = 2-1)$)

Moment 1 map $({}^{12}CO (J = 2-1))$

¹³CO (J = 2-1)

Osaka 1.85-m (~3')

W43 (Carlhoff+2013)

IRAM 30-m (~11")

ALMA Cycle1(~1")

Column Density % Derived from 13CO(2-1)

High density core in N159W-North

High density core in N159W-North

Integrated intensity(K km/s)

GMCs in the Galaxy and LMC

- ⋆ Massive star forming regions: >30Mo, 10⁵Lo
- * Similar shapes
 - Filaments + Multiple velocity components
 - Filament-filament interaction?
- Different column density
 - ♦ GMCs in the LMC have higher N(H2)
 - A More active star formation in the LMC??

1.85m telescope

¹²CO, ¹³CO, C¹⁸O (J=2–1) simultaneously 2SB mixer, Dual pol. Beam size: 2.7 arcmin 0.1pc@140pc, 1pc@1-2kpc Targets ■ GMCs (¹²CO, ¹³CO) Dense cores (C¹⁸O) Comparison with larger radio telescopes, Planck, Fermi, Akari, Herschel

Galactic Plane Survey

Galactic Plane Survey

Coverage

1.85m telescope \rightarrow Chile

- TAO facility in San Pedro de Atacama (@2500m)
 - ALMA site is expensive!!
- Ultra-wide band receivers (NAOJ + Osaka Pref. Univ.)
 - Band 6 (230GHz)+7 (345GHz) receivers
 - Wide IF: 4-18GHz (\rightarrow 4-25GHz)
 - CO(J=2-1, 3-2) simultaneous obs.
- Targets
 - Galactic Plane
 - Magellanic Clouds

High mass SF in GMC

- Resolved CO observations toward GMCs
 - from nearby GMCs to GMCs in the LMC
 - from small telescopes to ALMA
 - a lot of samples with resolutions of <~ 0.1pc
 - along the galactic plane and in the Magellanic Clouds
 - Dynamical interaction of the gas is a key to understand the high mass star formation.

1.85m telescope Orion

LARGE

in Chile

ALMA LMC