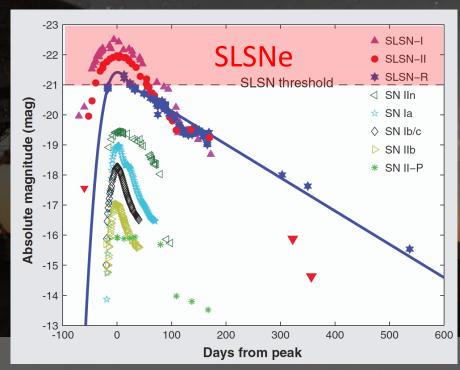
Obscured Star Formation in the Host Galaxies of Superluminous Supernovae

Bunyo Hatsukade (University of Tokyo)

N. Tominaga, M. Hayashi, M. Konishi, Y. Matsuda, T. Morokuma, K. Morokuma-Matsui, K. Motogi, K. Niinuma, Y. Tamura


Hatsukade et al. 2018 ApJ 857, 72

Chile-Japan Academic Forum, Nikko Senhime-monogatari hotel, 25-28 Sep 2018

Superluminous Supernovae (SLSNe)

- Very bright explosions
 - peak absolute magnitudes of <~-21 mag
 - ~10-100 times brighter than ordinary Type Ia and core-collapse SNe
- a new class of SNe which were only discovered recently by wide-field time-domain surveys
- Detectable at high redshifts (z_{spec} = 3.9; Cooke+12)

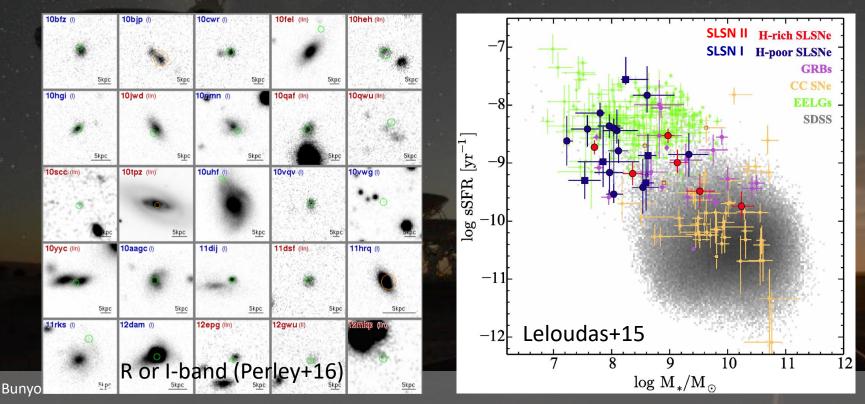
Powerful indicators of environments in the distant universe

Light curves of SNe (Gal-Yam 12)

Physical Nature of Progenitor

• SLSN-II

- hydrogen-rich in spectra
- explained as an interaction with dense circumstellar medium
 - e.g., Woosley+07; Moriya+13


• SLSN-I

- hydrogen-poor in spectra
- physical nature of the progenitor is still a matter of debate
 - spin-down of a newborn strongly magnetic neutron star (magnetar; e.g., Kasen & Bildsten 10; Woosley 10)
 - fallback accretion onto a compact remnant (e.g., Dexter & Kasen 13)
 - pair instability SN (e.g., Gal-Yam+09)
 - SN which produces a large amount of 56Ni (e.g., Moriya+10)

Host Galaxies

- SLSN-I hosts
 - dwarf galaxies (low luminosity, low stellar, low SFR) compared to local SF galaxies and the hosts of core-collapse SNe
- SLSN-II hosts
 - show a wider range

(e.g., Chen+13, 15, 17; Lunnan+14; Leloudas+15; Angus+16; Perley+16)

SFRs in SLSN Hosts

Previous studies

 made exclusively in optical, which are subject to dust extinction in contrast to longer wavelengths

→ it is possible that we are missing obscured star formation

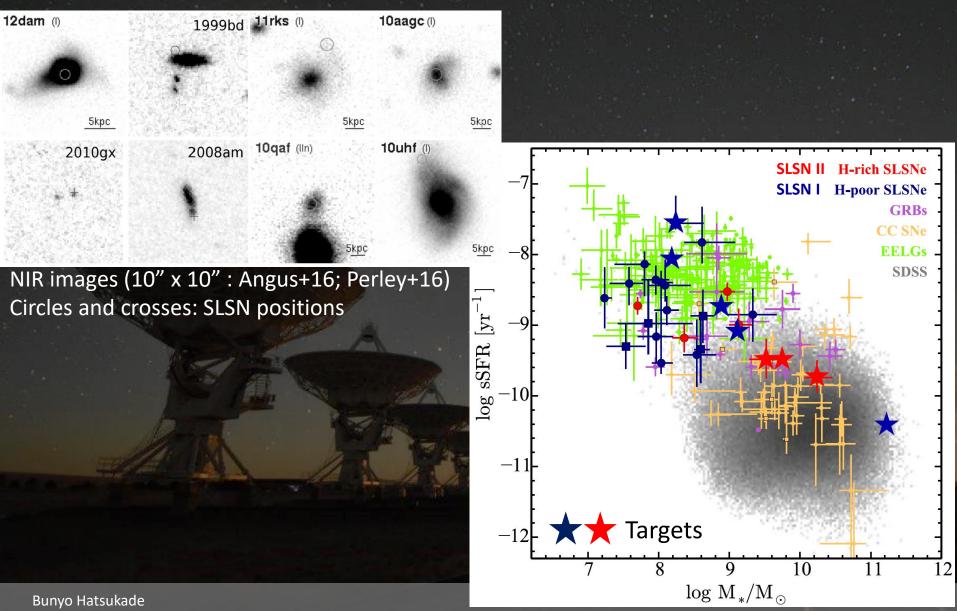
Radio observations

- probe dust-obscured star formation
- Schulze+18

searched radio emission from the survey data of FIRST, NVSS, SUMSS
 → No host is detected with rms ~0.15, ~0.45, ~1.3 mJy/beam

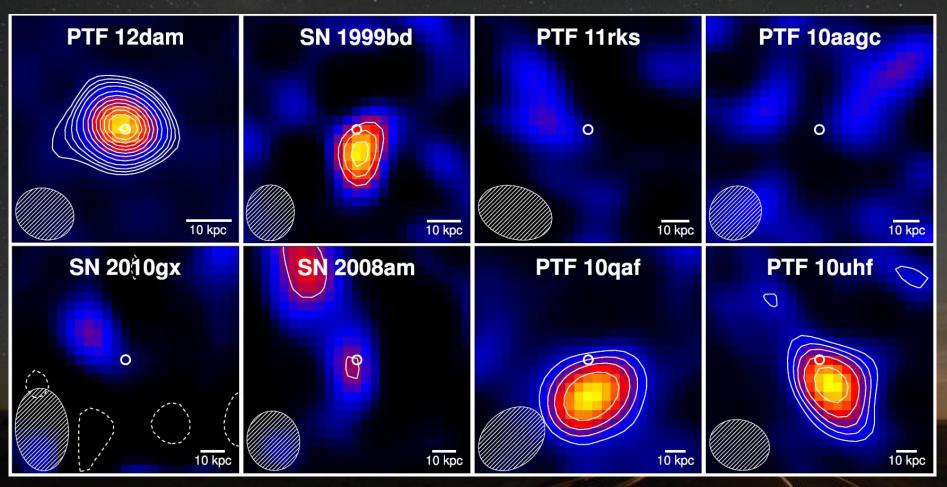
deeper VLA observations of 3 hosts at z=0.1-0.3 → non detection

The number of hosts with deep radio observations is still very limited, and it is essential to study a larger sample


VLA Observations

Targets: 8 hosts

- from comprehensive studies of SLSN hosts in the literature, where SFR, stellar mass, and other information are available
- SFR(UV/opt) >~ 1 Msun/yr & z < 0.3, to ensure a significant constraint on obscured SF
- excluding hosts that are known to have possible AGN features
 - Lunnan+14; Leloudas+15; Angus+16; Perley+16
- Observations on 2017 May 28-29
 - S band (3 GHz, 13 cm), C array configuration
 - on-source ~ 1.5 hr/source

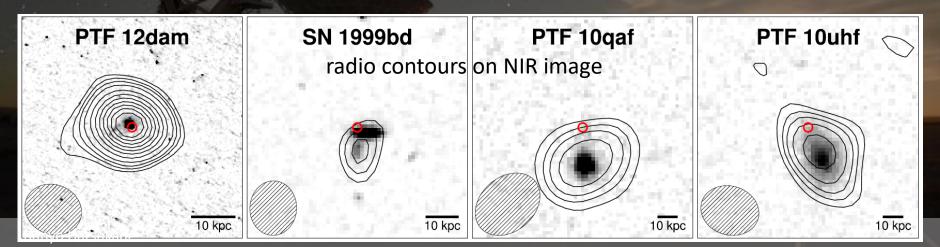

CLEN	Class	_	D A a	Decl. ^a		SED(U _a) ^c	$\log(M_{\rm o})^{\rm d}$	$12 \pm \log(0/\mathrm{H})^{\circ}$
SLSN	Class	z	R.A. ^a (J2000)	(J2000)	$\frac{\text{SFR(SED)}^{b}}{(M_{\odot} \text{ yr}^{-1})}$	$\frac{\text{SFR}(\text{H}\alpha)^{\text{c}}}{(M_{\odot} \text{ yr}^{-1})}$	$\log(M_*)^{d}$ (M_{\odot})	$12 + \log(O/H)^{e}$
PTF 12dam	I-R	0.107	14:24:46.20	+46:13:48.3	$11.13^{+3.376}_{-3.339}$	$4.781_{-1.174}^{+0.965}$	$8.30_{-0.15}^{+0.15}$	$8.00\substack{+0.01\\-0.01}$
SN 1999bd	II	0.151	09:30:29.17	+16:26:07.8		1.09 ± 0.34	$9.52_{-0.24}^{+0.26}$	8.52 ± 0.02
PTF 11rks	Ι	0.192	01:39:45.53	+29:55:27.4	$1.064_{-0.429}^{+0.346}$	$0.389^{+0.202}_{-0.147}$	$9.11_{-0.16}^{+0.13}$	$8.17_{-0.17}^{+0.11}$
PTF 10aagc	Ι	0.206	09:39:56.92	+21:43:17.1	$1.566^{+1.049}_{-0.646}$	$0.474_{-0.160}^{+0.187}$	$8.98^{+0.13}_{-0.21}$	$8.19_{-0.05}^{+0.04}$
SN 2010gx	I	0.230	11:25:46.71	-08:49:41.4	$0.532^{+0.287}_{-0.248}$	$0.257^{+0.052}_{-0.051}$	$7.87^{+0.13}_{-0.21}$	$7.94_{-0.14}^{+0.09}$
SN 2008am	II	0.234	12:28:36.30	+15:34:50.0		1.38 ± 0.39	$9.13_{-0.14}^{+0.19}$	8.35 ± 0.02
PTF 10qaf	Π	0.284	23:35:42.89	+10:46:32.9		3.13 ± 0.89	$10.24_{-0.17}^{+0.22}$	8.68 ± 0.04
PTF 10uhf	I	0.288	16:52:46.70	+47:36:21.8	$6.837^{+2.227}_{-3.103}$	$19.36^{+7.301}_{-5.764}$	$11.23_{-0.15}^{+0.12}$	$8.70\substack{+0.01\\-0.01}$

Targets

Results

4 detection, 1 tentative, and 3 non detection

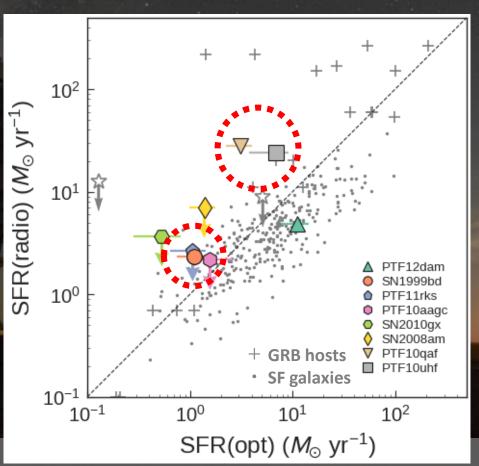
25" x 25". Contours -2.5σ, 2.5σ, 3.5σ, 4.5σ, and 2.5σ steps subsequently


SFR

Radio-derived SFR

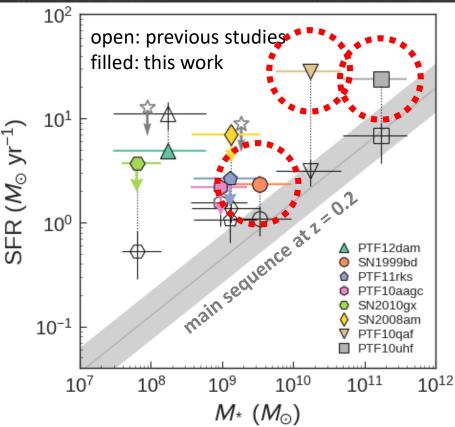
$$\left(\frac{SFR_{\text{Radio}}}{M_{\odot}/\text{yr}}\right) = 0.059 \left(\frac{F_{\nu}}{\mu \text{Jy}}\right) (1+z)^{-(\alpha+1)} \left(\frac{D_{\text{L}}}{\text{Gpc}}\right)^2 \left(\frac{\nu}{\text{GHz}}\right)^{-\alpha}$$
(Murphy+11)

• assume α = -0.75 (spectral slope of radio continuum)


 The hosts of PTF 10qaf and PTF 10uhf have high SFRs (>20 Msun/yr), making them the most intensely starforming galaxies among SLSN hosts

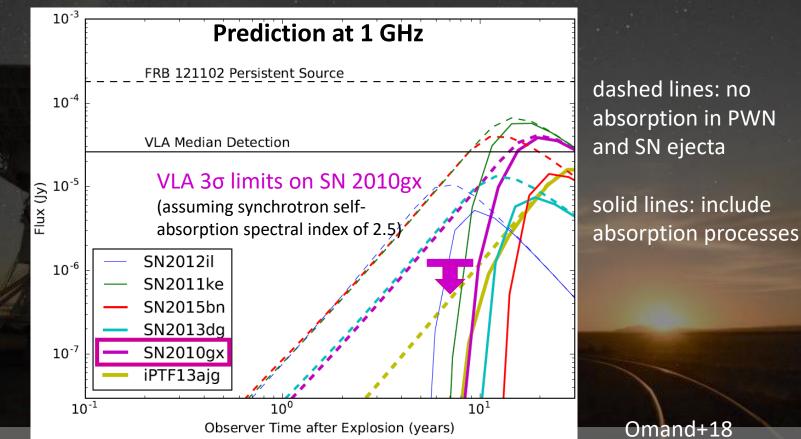
Obscured Star Formation

Obscured SF

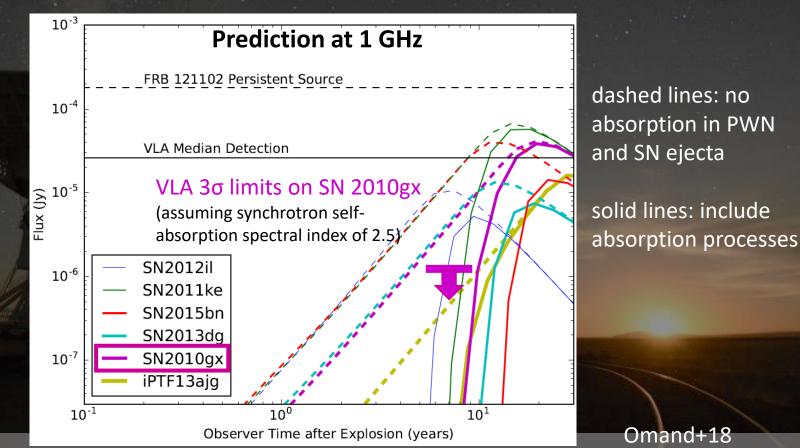

- SFR(radio) is larger than SFR(opt) in 3 hosts
 - SN 1999bd, PTF 10qaf, PTF 10uhf
 - by a factor of 2-9

Stellar Mass and SFRs

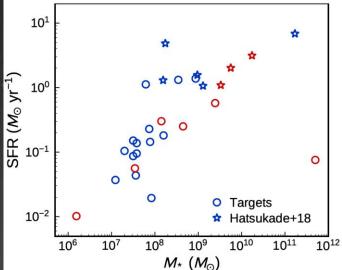
- Previous studies: SN 1999bd, PTF 10qaf, and PTF 10uhf are on the main-sequence of SF galaxies
- Radio: they are above the sequence
 starburst nature

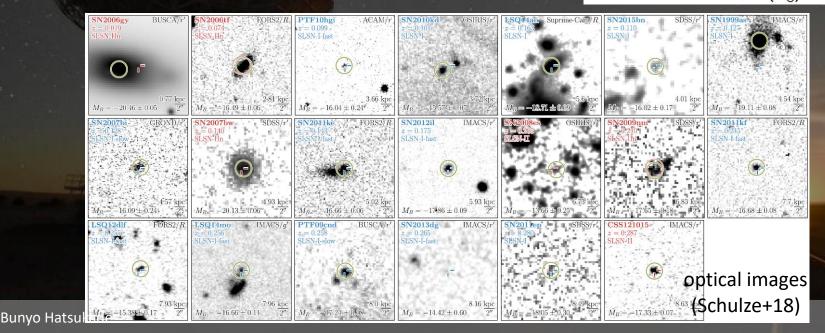

a higher fraction of starbursts in SLSN hosts than estimated

c.f., ≈5% of local SF galaxies; Perley+16

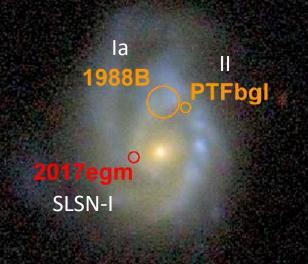

Constraint on Pulsar-driven SN Model

- Pulsar-driven SN remnants cause quasi-steady synchrotron emission associated with nascent pulsar wind nebulae (PWNe)
 - Murase+16; Kashiyama & Murase 17; Omand+18
- Radio emission increases with time, reaches its peak at ~10-30 yr


Constraint on Pulsar-driven SN Model

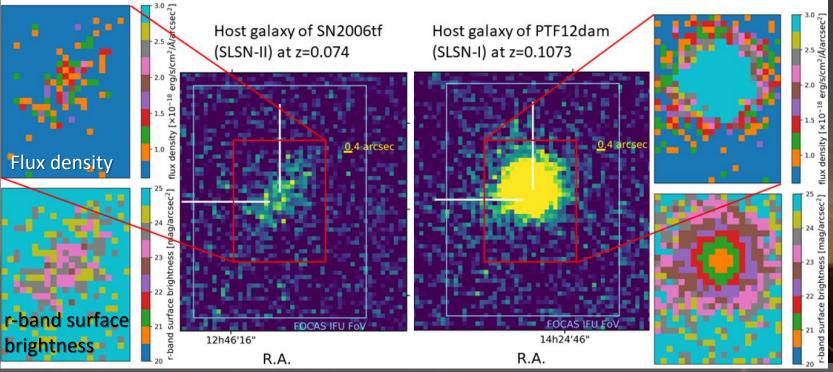

 The predicted radio emission of SN 2010gx for the case of no absorption processes is inconsistent with our 3σ upper limit

Future Work 1


- Current sample is dominated by higher-SFR and stellar mass hosts
- To understand the general properties, a volume-limited sample of 20 SLSN hosts at z < 0.3 is observed with VLA
- 24 hr at Priority C (filler)

Future Work 2

- ALMA study of SLSN2017egm host (B-rank, cycle 6)
 - SLSN-I
 - z = 0.03063, one of the closest SLSNe
 - spatially-resolving (500 pc) multiple CO line observations
 - investigate properties characteristic of SLSN environment
 - M* ~ (2-5)x10¹⁰ Msun, SFR ~ 15 Msun/yr
- Observations
 - CO(1-0)@Band6 & CO(3-2)@Band 7
 - dust continuum at band 7
 - beam size 0.8" (~500 pc)
 - 12m + ACA



NGC 3191

10" = 6.2 kpc

Future Work 3

- Subaru/FOCUS IFU proposal (19A)
 - SN2006tf (z = 0.074), PTF12dam (z = 0.1073)
 - spatially-resolved stellar population age, star formation, metallicity, and ionization parameter

Summary

- VLA 3 GHz observations of 8 SLSN hosts (0.1 < z < 0.3)
 4 hosts are significantly detected
- Two hosts have high SFRs (>20 Msun/yr)
 most intensely star-forming galaxies among SLSN hosts
- Three hosts have an excess of SFR(radio) over SFRs(opt) by >2
 obscured star formation
- They are above the main sequence
 a higher fraction of starbursts in SLSN hosts
- Observations place a constraint on a pulsar-driven SN model
- Future Works
 - increase the sample size (>20 hosts)
 - spatially-resolved molecular gas, dust-obscured SF, stellar population