

INSTITUTO DE ASTROFÍSICA Facultad de física

Gas distribution in a strongly lensed "normal" galaxy at z~2

Felipe Barrientos

Jorge González Mike Gladders Eva Wuyts Matt Bayliss Keren Sharon Jane Rigby Manuel Aravena Eduardo Ibar

RCS2 J232727.6-020437 M ~3×10¹⁵ M_☉, z = 0.7

Sharon et al. 2015

One of the brightest arcs known

RCS2 J032727-132627 M ~10¹⁵ M_{\odot}, z_{CL} = 0.56 z_{arc} = 1.7, r_{AB} = 19.1 38" length in 4 images u ~ < 30x > from 4x to 100x

Wuyts et al. 2010

Strong lensing depends on three elements

1. The lens - here the cluster of galaxies

2. The source - the distant galaxy

3. The distances - cosmology

Sharon et al 2012

An accurate model allows us to study this galaxy in a x100 pc scale

SFR mass sequence for star forming galaxies (integrated quantities)

Whitaker et al 2012

RCS0327 provides an opportunity for probing low mass galaxies at high redshifts

3 Main Sequence (z=1.7; Whitaker+14)*individual clumps 2 log SFR (M_o yr⁻ 0 -1 7 10 8 9 11 6

Whitaker et al 2014

 $\log M (M_{\odot})$

- We conducted an ALMA program to map the dust and molecular gas in the RCS0327 arc, similarly to what has been done in the OIR
 - CO(3-2), CO(6-5), CO(8-7) and [CII]

Source plane reconstruction

uvmcmcfit (Bussmann et al. 2013)

Source plane reconstruction

Summary

We managed to detect CO lines and dust emissions in a relatively faint galaxy at z=1.7.

Using the best lens model available we were able to resolved the molecular gas and dust emission down to sub-kpc scale on the galaxy.

We find that RCS0327 is consistent with being a starburst and has properties similar to local low-metallicity starburst BCDs.

The detected CO(3-2) and CO(6-5) return a CO excitation level consistent with having the peak at J~5 at large scales. Which is a combination of compact and extended gas different with excitations.

What is next?

- Exploit the higher resolution of ALMA
- Include [CII]
- Expand this study to other lensed galaxies
 - We got ACA time for a small sample

Bordoloi et al. 2016

 $H_2 = 3.51^{+0.26}_{-0.28} \times 10^8 M_{\odot}$

Region	$S_{450\mu m}$	$S_{\rm CO(3-2)}^{\rm a}$	$S_{\rm CO(6-5)}^{\rm a}$	$S_{\rm CO(6-5)}/S_{\rm CO(3-2)}$	$\Sigma_{\rm H2}{}^{\rm b}$	$\Sigma_{ m SFR}$
	$\mu { m Jy}$	$\mu { m Jy}$	$\mu { m Jy}$		${\rm M}_{\odot}{\rm pc}^{-2}$	$\rm M_\odotyr^{-1}kpc^{-2}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Main Component	$48.1^{+54.9}_{-16.6}$	$70.5^{+5.1}_{-5.6}$	$77.1^{+13.8}_{-12.9}$	1.1 ± 0.2	$16.2^{+5.8}_{-3.5}$	$0.27\substack{+0.43\\-0.13}$
01	4.0 ± 0.9	6.7 ± 3.3	3.6 ± 3.4	0.5 ± 0.6	7.1 ± 3.5	$0.16\substack{+0.15 \\ -0.04}$
02	6.9 ± 1.0	12.3 ± 1.8	16.3 ± 6.4	1.3 ± 0.6	13.0 ± 1.9	$0.27\substack{+0.17 \\ -0.04}$
03	1.4 ± 0.6	6.6 ± 2.1	0.0 ± 1.6	< 0.5	7.0 ± 2.2	$0.06\substack{+0.10 \\ -0.02}$
04	0.0 ± 0.3	1.2 ± 1.1	0.0 ± 1.6		< 2.3	< 0.10
05	0.0 ± 0.2	0.1 ± 0.7	0.0 ± 1.5		< 1.5	< 0.07
06	0.0 ± 0.2	0.0 ± 0.7	0.0 ± 1.6		< 1.5	< 0.07
07	0.0 ± 0.3	0.0 ± 0.7	0.0 ± 1.8		< 1.5	< 0.10
08	0.5 ± 0.3	5.0 ± 3.1	10.2 ± 9.7		< 6.6	< 0.10
09	3.3 ± 1.0	12.8 ± 1.9	38.7 ± 9.9	3.0 ± 0.9	13.5 ± 2.0	$0.13\substack{+0.17 \\ -0.04}$
10	3.0 ± 1.9	12.7 ± 2.7	0.0 ± 1.6	< 0.3	13.4 ± 2.9	< 0.64

 Table 1. Flux density values measured in the source plane.

Comparison with simulations

Comparison with simulations

Bournaud et al. 2015