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The problem

Situation (my understanding):
Ï Telescope used for detecting supernovae right after explosions

Ï rapid increase in observed flux, requiring multiple observations
during a night

Ï Strategy:
Ï take successive images of a given zone
Ï check for differences between them

Ï In this context:
Ï try to observe the whole visible celestial sphere
Ï repeat some time later
Ï there must be a minimum delay between successive images
Ï aim: maximize the number of observations made
Ï in other words, minimize the time lost

Ï telescope movements
Ï waiting time



Background: optimization tools



Background: optimization tools

Consider the following situation:
Ï 7 positions to observe in the sky
Ï Each position

Ï has an expected reward
Ï requires a certain time to be photographed

Ï A telescope is available for a limited time



Example

Ï Data: Position: 1 2 3 4 5 6 7
Reward: 7 2 4 9 1 2 3
Time: 12 8 11 19 5 2 5

Ï Total available time: 30
Ï How can we solve the problem?

Ï Mathematical formulation:knapsack problem
Ï Variables:x1,x2,x3,x4,x5,x6,x7

Ï xi Æ1 if we photograph positioni , 0 otherwise
Ï binary variables, constrained to values 0 or 1

Ï Objective:
Ï maximize 7x1 Å 2x2 Å 4x3 Å 9x4 Å x5 Å 2x6 Å 3x7

Ï Constraint:
Ï subject to 12x1 Å 8x2 Å 11x3 Å 19x4 Å 5x5 Å 2x6 Å 5x7 · 30
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Mathematical formulation

Knapsack problem:more concisely:

maximize
X

j
vj xj

subject to
X

j
wj xj · W

xj 2 {0,1} 8 j



How to solve it � with Gurobi and Python
Simply describe the problem, and send it to a general purpose solver

1 from gurobipy import *
2 m = Model()
3 x = {}
4 for i in range(1,8):
5 x[i] = m.addVar(vtype="B")
6 m.addConstr(12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30)
7 m.setObjective(7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7], GRB.MAXIMIZE)
8 m.optimize()
9 for i in range(1,8):

10 print(x[i].X)

1 Optimal solution found (tolerance 1.00e-04)
2 Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0000%
3 1.0
4 0.0
5 1.0
6 0.0
7 0.0
8 1.0
9 1.0
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How to solve it � with a modeling language
Simply describe the problem in a modeling language, and send it to
a general purpose solver

1 ampl: var x {1..7} binary;
2 ampl: maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7];
3 ampl: subject to Capacity:
4 12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30;
5 ampl: solve;

1 Academic license - for non-commercial use only
2 Gurobi 8.0.1: optimal solution; objective 16
3 2 simplex iterations
4 1 branch-and-cut nodes
5 ampl: display x;
6 x [*] :=
7 1 1
8 2 0
9 3 1

10 4 0
11 5 0
12 6 1
13 7 1
14 ;
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How to solve it?

General-purpose optimization solvers:
Ï No need to know what methods are used for solving
Ï Very powerful:

Ï most of the underlying optimizatin problems are NP-hard
Ï in the worst case, take exponential time in terms of the size of

the problem
Ï but in practice, even very large problems can be solved

Ï often, thousands or millions of variables and/or constraints

Ï Convenient way to get a proven optimum
Ï even open source solvers involve years of development



The problem



The problem

Ï There is a set of positions to be observed in the sky
Ï Each of them can be observed on a given con�guration of the

telescope
Ï We want to

Ï minimize unproductive time
Ï maximize the number of positions observed 3 times during the

night
Ï Di�culty: sky "moves" during the night

Ï setup between two telescope positions is time-dependent



Background



Background



Figure



An optimization model



An optimization model

maximize
X

k2K
zk

subject to
X

i2I
xit · 1 for t Æ0, . . . ,T

xi ,t ¡ 1 Æ
X

j 2I
wijt 8 i 2 I , t Æ1, . . . ,T

xjt Æ
X

i2I :t ¡ cij È0
wij ,t ¡ cij 8 j 2 I , t Æ1, . . . ,T

yk0 Æ0 8k 2 K

ykt ·
X

i2I
aikt xit 8k 2 K , t Æ1, . . . ,T

min(T ,t Ådk )X

t 0Æt
ykt 0 ¸ dk (ykt ¡ yk ,t ¡ 1) 8k 2 K , t Æ1, . . . ,T

zk ·
TX

t Æ1
ykt 8k 2 K

(all variables are binary)



Data

Ï K ! set of positions to be observed in the sky
Ï I ! set of positions in the telescope
Ï T ! number or periods to consider (time discretization)
Ï aikt ! connect telescope and sky's positions:

Ï aikt Æ1 if at periodt telescope in positioni 2 I observes sky's
position k 2 K

Ï aikt Æ0 otherwise

Ï cij ! time necessary to move the telescope from positioni to j
Ï dk ! time necessary to make observation at sky's positionk



Variables

Ï Main decision variables:
Ï xit Æ1 if telescope is on positioni at period t
Ï xit Æ0 otherwise

Ï Telescope movement:
Ï wijt Æ1 if at periodt telescope moves from positioni to

position j (possibly,j Æi )
Ï Observed: (determined in terms ofx)

Ï ykt Æ1 if sky's positionk is observed at periodt , 0 otherwise
Ï Positions observed: (determined in terms ofy)

Ï zk Æ1 if sky's positionk has been observed



Constraints (#1)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed

At each period, telescope is (at most) in one position
X

i2I
xit · 1 for t Æ0, . . . ,T



Constraints (#2)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed

If the telescope was in positioni at t ¡ 1, then at t it must move to
some (possibly the same) position

xi ,t ¡ 1 Æ
X

j 2I
wijt 8 i 2 I , t Æ1, . . . ,T

Ï if xi ,t ¡ 1 Æ1, then one of thewijt must be non-zero



Constraints (#3)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed

For being in positionj at periodt , the telescope must have been in
a positioni (possibly the same) early enough to move toj

xjt Æ
X

i2I :t ¡ cij È0
wij ,t ¡ cij 8 j 2 I , t Æ1, . . . ,T



Constraints (#4)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed

No observations can be made att Æ0

yk0 Æ0 8k 2 K



Constraints (#5)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed
Ï aikt ! 1 if at period t telescope in position i 2 I observes sky's positionk 2 K

Observing sky's positionk at periodt is only possible if the
telescope is in a position from whichk can be observed

ykt ·
X

i2I
aikt xit 8k 2 K , t Æ1, . . . ,T



Constraints (#6)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed
Ï dk ! time necessary to make observation at sky's positionk

If an observation at pointk has started in periodt , then the same
position must be observed at leastdk successive periods

min(T ,t Ådk )X

t 0Æt
ykt 0 ¸ dk (ykt ¡ yk ,t ¡ 1) 8k 2 K , t Æ1, . . . ,T

Ï observing pointk starts in periodt i� yk ,t ¡ 1 Æ0 andykt Æ1
Ï in that case, the right-hand side is positive
Ï otherwise, the constraint becomes redundant



Constraints (#7)

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed

A position is counted in the objective only if it was observed at
some valid period

zk ·
TX

t Æ1
ykt 8k 2 K



Objective

Ï xit Æ1 if telescope is on positioni at period t
Ï wijt Æ1 if at period t telescope moves from positioni to position j
Ï ykt Æ1 if sky's position k is observed at periodt , 0 otherwise
Ï zk Æ1 if sky's position k has been observed

Objective: maximize the number of positions observed:

maximize
X

k2K
zk



Re�nements: second-time observations

Ï What happens if all the positions can be observed?
Ï We should take into account second-time observations

Ï also third-time, fourth-time, . . .
Ï Additional variables:

Ï y0
kt Æ1 if positionk is observed for the second time at some

periodt
Ï y0

kt Æ0 otherwise



Re�nements: second-time observations

Ï A minimum number of periods (¢ ) must elapse since the �rst
observation

Ï In other words:y0
ks must be zero for¢ periods after periodt

at which ykt changed from 1 to 0
Ï Additional constraints (8k 2 K , t Æ1, . . . ,T ):

y0
kt · 1¡ (yk ,t ¡ 1 ¡ ykt )

y0
k ,t Å1 · 1¡ (yk ,t ¡ 1 ¡ ykt )

. . .

y0
k ,t Å¢ · 1¡ (yk ,t ¡ 1 ¡ ykt )

Ï A new variablez0
k is needed for counting the number of

second-time observations (as withzk )
Ï Extension for three-times observations:z00

k



Objective: maximize the number of three-times observations

maximize
X

k2K
z00

k



Issues

Ï The previous model is good, but. . .
Ï Is it acceptable in practice?

Ï For a typical instance:
Ï sky positions:È 300 ! » 100000 arc variables
Ï time discretization:

Ï each image:» 48 seconds
Ï each movement: from a few seconds to» 1 minute

Ï If we discretize to 1 second:È 4000 million variables. . .
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Practical approach # 1

For dealing with the practical problem:
Ï Motivation: as we cannot a�ord much detail on future data,

concentrate on the next movement
Ï Very simple idea: use anearest-neighbor approach
Ï Well known heuristic method for the traveling salesman

problem (TSP)



Nearest-neighbor



Nearest-neighbor



Nearest-neighbor



Nearest-neighbor: improvement
Ï Consider only neighbors visited at mostN Å 2 times, whereN

is the minimum number of visits



Algorithm: nearest-neighbor

Solution contruction procedure:
Ï select (arbitrarily) a visible point
Ï repeat:

Ï move to closest "visitable" point
Ï visible and with minimum delay from previous observation

Ï advance simulation time:movement + exposure durations
Ï update set of "visitable" points
Ï determine distance from current point to all visitable

These solution constructions can be iterated:
Ï choose all di�erent starting points
Ï for each of them, construct a solution starting from thene
Ï generates many solutions
Ï at the end, choose the best of them
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Initial part of the solution
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