Supernovae with Tomo-e Gozen

Nozomu Tominaga

(Konan University)

10th Jul 2018 木曽シュミットシンポジウム2018 Supernovae with Tomo-e Gozen

SN IIb 2016gkg – shock breakout –

Bersten+18

What is the shock breakout?

Radiation dominate after the shock wave and radiation are fully coupled with matter.

When the shock wave approaches the stellar surface,

- Shock velocity: v_{sh}
- Diffusion velocity of radiation: c/τ
- If $c/\tau > v_{sh}$ (typically, $\tau < c/v_{sh} \sim 10$),

- Radiation partially affects matter and vice versa.
- Radiation hydrodynamics and >=2 temperatures are required.

Shock Breakout (Ensman & Burrows 92)

SN IIb 2016gkg – shock breakout –

Bersten+18

How many nearby galaxies?

GLADE catalog

Shock breakout of SN2016gkg M_{peak}^{\sim} -15mag, τ^{\sim} 1hr

- 16723 galaxies at <40Mpc (M_{peak})
- 9449 galaxies at <25Mpc (M_{peak} + 1mag)
- Tomo-e can cover 5000deg²/~3hr (1/8 of all sky)
- 2000 (1200) galaxies at <40 (25)Mpc/~3hr
- 10⁶ galaxies = 500 (850) times "~3hr observations"
- 170 (280) clear nights = ~2-3yrs
- But we cannot put 2 LC points during the shock breakout.

Shock breakout of Type IIP SNe M_{peak}^{\sim} -15- -16mag, τ^{\sim} 1-4hr

- It would be easier by a factor of several than SN2016gkg, in terms of brightness and duration.
- 1mag brighter (x2) and 4 times longer (x4)

Type IIP SN 2016esw observed within the 1st day after the explosion

Rapid rise of Type IIP SNe M_{peak} ~-17- -18mag, τ ~5days

- 436444 galaxies at <250Mpc (m_{lim}=19mag) but the GLADE catalog is incomplete
- Assuming 10⁻⁶SN/day/Mpc³ and 10hr obs./day
 - 3SNe/night (V=8x10⁶Mpc³, M_{peak})
 - 0.2SNe/night (V=5x10⁵Mpc³, M_{peak}+1mag)
 - 0.05SNe/night (V=1.4x10⁵Mpc³, M_{peak}+2mag)
- 1SNe with rapid rise over 2mag / 20 clear nights (~2months)

Origin of rapid rising

Wind shock breakout

• Cooling envelope

(Nakar & Sari 10; Rabinak & Waxman 11; Shussman+16; Sapir & Waxman 16)

Moriya, NT+11

González-Gaitán, NT+15

Wind shock breakout SN IIP with dense CSM

 $E = (0.1-1.3) \times 10^{51} \text{ erg},$ $M_{CSM} = 0.18-0.83 M_{\odot}$ for 70% of the SNe

SNe IIP with dense CSM will not have the shock breakouts at the stellar surface.

We may need to reduce the expected number of shock breakouts by a factor of 1/3.

Morozova+17

Wind shock breakout SN IIP with accerelating dense CSM

SN2013fs –firm evidence of dense CSM-

Yaron+17

Rapid follow-up obs. is important!

Follow-up observations

Okayama 3.8m new technology optical infrared telescope

SN2013fs -strict upper limit in radio-

Yaron+17

SN2013fs -structure of CSM wind-

Yaron+17

Variable mass loss rate at the end of presupernova evolution?

Summary

- Tomo-e SN survey will detect rising part of shock breakout (~1SN/2-3yrs) and shock breakout of SNe IIP (~1SN/1yr).
- We may increase the cadence later to capture the evolution of the shock breakout.
- Secure targets are the rapid rising of SNe IIP (~1SN/2months).
- Immediate and continuous follow-up observations are quite important. Tomo-e SN survey and followup obs. will reveal the fate of the massive stars.