Observations of Gravitational Wave Sources with Tomo-e Gozen

Masaomi Tanaka (Tohoku University)

GW170817

The first detection of GWs from neutron star merger The first detection of light from GW sources

New era of "multi-messenger" astronomy

Observations of Gravitational Wave Sources with Tomo-e Gozen

What we have learned from GW170817
Survey with Tomo-e Gozen

M ~ 0.01 Msun v ~ 0.1-0.2 c

Expected light curves of kilonova

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Smooth spectra (high velocity)

Kasen+13, Barnes & Kasen 13 MT & Hotokezaka 13, MT+14,

2017 Aug 17

GW170817: The first detection of GWs from a NS merger

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

(C) Michitaro Koike (NAOJ/HSC)

HSC survey led by Y. Utsumi and N. Tominaga

Electromagnetic counterpart of GW170817 @ 40 Mpc

2017.08.18-19

2017.08.24-25

Subaru/HSC z +IRSF/SIRIUS H, Ks

(Utsumi, MT, Tominaga et al. 2017, PASJ) J-GEM: Japanese collaboration for Gravitational-wave Electro-Magnetic follow-up

Survey with Subaru/HSC

Tominaga, MT et al. 2018, PASJ DECam: Soares-Santos et al. 2017

GW170817: light curves

Model: MT+17b

Data: Utsumi, MT+17, Drout+17, Pian+17, Arcavi+17, Evans+17, Smartt+17, Diaz+17, Valenti+17, Cowperthwaite+17, Tanvir+17, Troja+17, Kasliwal+17

Ejecta mass (w/ lanthanides) ~0.03 Msun

GW170817: Spectra

- Smooth spectra

Smoking gun!!

Spectra taken w/ VLT/X-shooter

Data: Pian+2017 Model: MT+2017

What we have learned from GW170817

• Kilonova and nucleosynthesis

- R-process nucleosynthesis took place
- R-process produced a wide range of elements
 - Red kilonova => lanthanides
 - Blue kilonova => lighter elements
- Ejection of ~ 0.03 Msun with v > ~ 0.1c
- Other signals
 - Host galaxy => "old" environment
 - Redshifts from EM => Hubble constant
 - GRBs and X-ray/radio afterglow => relativistic jets

(Many) open questions

Event rate and production rate?

- Enough to explain the total amount in the Universe?
- Abundance pattern? Similar to solar abundances?
 - Production of 3rd peak?? (Au and Pt!)
- Delay time?
 - r-process elements in metal poor stars

Need more observations with different viewing angles, NS masses, and environments

Observations of Gravitational Wave Sources with Tomo-e Gozen

What we have learned from GW170817
Survey with Tomo-e Gozen

Schedule

90% region		2015-2016	2016-2017	2018-2019	2020+	2024+
% within	5 deg^2	< 1	1–5 7–14	1–4 12.21	3–7 14–22	23–30 65 73
Median/deg ²	20 deg	< 1 460–530	7–14 230–320	12–21 120–180	14–22 110–180	03–73 9–12

KAGRA, LIGO, and Virgo 2018

40 Mpc

100 Mpc

GW-EM observations with Tomo-e

ToO: < 3 days after the merger ** Quicker is always better ** Cadence: ~2-4 hr <= 2-3 visits /night</p>

No filter <= faint, colors are uncertain (viewing angle) Depth: 20-21 mag 15 min (3 min x 5) on-source exposure 2x2 dithering => ~ 60 deg² in ~1 hr! (~500 deg² in 1 night!)

2 x 2 dithering => ~60 deg² (e.g., 15 min x 4 = 1hr)

Skymap of GW170817

(C) Tomoki Morokuma

Spectroscopy is a keyto identify NS mergersto identify elements(*)

(*) Not conclusive yet, but improvement in theory is ongoing

Follow-up with 3.8m telescope (Seimei) and TAO

Ohta-san's talk

MT+17

Chornock+17

Summary

- GW170817 (NS merger)
 - Kilonova was observed
 - Signatures of a wide range of elements (red and blue kilonova)
- Open questions
 - Event rate and production rate?
 - Abundance pattern? Similar to solar abundances?
 - Delay time?
- Observations with Tomo-e
 - ~100-300 deg² / 20-21 mag / 2hr cadence / no filter
 - Low-resolution spectroscopy with Seimei telescope Observations of NS mergers with different viewing angles, NS masses, and environments