

Emission from free neutron layer in binary neutron star merger

Toshikazu Shigeyama (University of Tokyo)

Ayako Ishii (University of Tokyo) Masaomi Tanaka (Tohoku University)

Ishii, TS, Tanaka 2018, arXiv: 1805.04909

Emission from Binary Neutron Star Merger

(Li & Paczynski 1998, B. D. Metzger et al. 2010, …)

GW170817

Electromagnetic emission was detected over wide wavelength range

http://aasnova.org/2015/10/28/what-do-you-get-when-two-neutron-stars-merge/

Observed emission could be almost explained by kilonova model

- Neutron star matter is ejected at merging (Neutronrich ejecta best site for r-process nucleosynthesis)
- Emission from ejecta composed of radioactive elements is detected

Early Emission from Neutron Star Merger

(M. Tanaka et al. 2017, Y. Utsumi et al. 2017, I. Arcavi 2018, …)

- Observations started in ~11 h after merging event
- Observed early emission (~1 day) is more luminous and bluer than model computation

Early emission can provide us with rich information \rightarrow Shock produced by the merger may contribute

Free Neutron Precursor

(B. D. Metzger et al. 2015, Metzger 2017)

Smoothed Particle Hydrodynamics (SPH) simulation (Just et al. 2015) \rightarrow Can the similar result be obtained in grid-based simulations?

Objectives

Examining early emission by free-neutron-powered precursor in shock breakout of binary neutron star merger

<u>Step 1</u>

- Developing relativistic Lagrangian hydrodynamics code and reproducing shock breakout of neutron star merger jet
 Step 2
- Estimating surviving free neutron mass fraction with e⁺ and e⁻ captures and some nuclear reactions including neutron captures Step 3
- Calculating mass of ejected free neutrons
 Step 4
 - Calculating emission from free neutron laye

Simulation Condition

- Relativistic Lagrangian hydro simulation
- 1D spherical symmetric coordinate
- 500 computational cells in radial direction
- $E_{final} = 10^{47} 10^{50} \text{ erg}$
- R = 15, 20, 25, 30 km
- $M_{shell} = 10^{-3} M_{sun}$
- $\rho \propto (R r)^3$ (K. Kyutoku et al. 2014)

Shock wave propagates through merging NS Shock breakout occurs when it reaches NS surface

Estimation of free neutron fraction

- Free neutron fraction X_n is set to be 0.9 initially ($Y_e=0.1$) (beta equilibrium of cold dense matter)
- e^{\pm} is generated by shock heating

$$n + e^+ \to p + \bar{\nu_e}$$
$$p + e^- \to n + \nu_e$$

- Time scale of positron and electron capture processes depend on temperature (τ₊(T), τ₋(T)) (L. Kawano 1992, B. D. Metzger et al. 2015)
- Time evolution of X_n when T>10¹⁰ K is calculated by $\frac{dX_n}{dt} = -\frac{X_n}{\Gamma\tau_+(T)} + \frac{(1-X_n)}{\Gamma\tau_-(T)}$
- Nuclear reaction network calculations are performed after temperature decreases down to 10¹⁰ K (Shigeyama et al. 2010) 7/17

Results

- Accelerated shock wave near the surface can be reproduced
- Ejecta in outermost region have relativistic speeds

Results

Inner region

Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Inner region

• Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Inner region

Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Inner region

• Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Total Mass of Free Neutrons

 $M_n = \Sigma_i (X_{n,i} \times m_i)$ (Total mass of free neutron)

- Models with an energy of 10⁴⁸ erg yields maximum amounts of free neutrons for all *R*
- M_n value is smaller than previous SPH work by ~2 orders of magnitude (~10⁻⁴ M_{sun})

R [km] ($E_f = 10^{48} \text{ erg}$)	15	20	25	30
M _n [M _{sun}]	9.2×10-7	2.1×10-6	3.6×10-6	5.2×10-6

Emission from free neutron layer

 $M_{ej} = 10^{-5} M_{sun}$, $E_{final} = 10^{48} erg$, ejecta velocity ~c/3, opacity ~0.4 cm² g⁻¹

- Photon diffusion velocity becomes comparable to expansion velocity (c/3) at ~1,500 s
- Energy density at neutron decay time (~800 s) is

 $\epsilon_0 \sim 10^6 \text{ erg cm}^{-3} (M_{\rm n}/3.6 \times 10^{-6} M_{\rm sun})$

 Subsequent adiabatic expansion up to 1,500 s, luminosity L is estimated by

$$L \sim 7.6 \times 10^{41} \text{ erg s}^{-1} \left(\frac{t}{1,500 \text{ s}}\right)^{-2} \left(\frac{M_{\text{n}}}{3.6 \times 10^{-6} M_{\text{sun}}}\right)$$
 (Ultraviolet, timescale of ~30 min)

Absolute magnitudes ~ -13.55 and -13.25 mag (AB magnitude) at 2000 and 2600 Å (UVW2 and UVW1 of Swift/UVOT), respectively

Summary

- Shock breakout in neutron star merger was investigated by relativistic Lagrangian hydrodynamics code
- We obtain the maximum amount of free neutrons when $E_{\rm f}$ $\sim 10^{48}~erg$
- Total mass of neutron surviving region is ~10⁻⁶ M_{sun} (two orders smaller than previous SPH work)
 →Free neutrons might be included in different ejecta components
- Luminosity of free neutron emission reaches ~7×10⁴¹ erg s⁻¹ in optical band at ~ 30 min after merger event
 Future work
- Monte Carlo Radiative transfer computation (A. Ishii et al. 2017) with thermal photons from free neutron decays

16/17 Thank you for your attention!

Reaction timescales

timescale for positron capture

$$\tau_+ \simeq 2.1 \left(\frac{kT}{\text{MeV}}\right)^{-5} \text{ s}$$

(B. D. Metzger et al. 2015)

(L. Kawano 1992)

timescale for electron capture

$$\tau_{-} \simeq \frac{\tau e^{qz}}{\left(\frac{5.252}{z} - \frac{16.229}{z^2} + \frac{18.059}{z^3} + \frac{34.181}{z^4} + \frac{27.617}{z^5}\right)}$$

- q: $(m_n m_p)/m_e$
- z: $m_e c^2/kT$

Grid Convergence Test

- Computation was performed with 1,000 cells
- Distribution extends to larger Γv_r region than 500 cells
- M_n values are almost equivalent (1.4 × 10⁻⁶ M_{sun} and 1.3 × 10⁻⁶ M_{sun}) \rightarrow Computation with 500 cells are converged

Endothermic reaction

- Disintegration for the heavy element nuclei is endothermic reaction
- The energy density: $a_r T^4/\rho \sim 3\,\times\,10^{19}$ erg g^-1 (T $\sim\,2.5\,\times\,10^{11}$ K)
- The energy of the endothermic reaction for Fe: ~9 MeV per nucleon \rightarrow Energy density for the reaction: 9 MeV/mu ~ 8.6 × 10¹⁸ erg g⁻¹
- Thus the energy is brought out by the endothermic reaction by a few tens of a percent
- The expelled energy might be decreased with the realistic composition of the merging neutron stars