ravitational wave 5 **by KAGRA** 0 July 6, 2017

Kiso Schmitt Symposium

Osamu Miyakawa, ICRR, UTokyo

m, 2017/7/06, Osamu Miyakawa

Gravitational waves detected by LIGO

What signals were seen?

Waves measured by two LIGO detectors on 2015/9/14

.3

Detection of gravitational wave using laser interferometer

What can we know from this detection?

- Signal from binary black holes
- 13 billion yesar ago
- Two black holes merged into one black hole
- 36 solar mass black hole + 29 solar mass black holes make a 29 solar mass black hole

KAGRA Area of GW sources

LHV

30.25

- by two LIGOs ~500deg²
- +VIRGO ~30deg²
- +KAGRA ~10deg²

(1.4,1.4)Msun

median of $\delta\Omega$ [Deg²]

(Bayesian inference)

J.Veitch et al., PRD85, 104045 (2012)

See also Rodriguez et al. 1309.3273

direction, inclination, polarization angle are given randomly

LHVK

9.5

- Host: ICRR Utokyo, Co-host: KEK, NAOJ
- 300+ collaborators from 90+ institutes
- Constructed in Kamioka mine
- Underground and cryogenic

Kiso Schmitt Symposium, 2017/7/06, Osamu Miyakawa

Snow in winter. Melted snow in April.

Quiet underground site

Design and on site pictures

KAGRA pictures

ON

Entrance of KAGRA

Remote control room

KAGRA pictures

Sapphire mirror

KAGRA Baseline Configuration

and the second second

- Period: March 25 to 31 and April 11 to 25
- To obtain experiences of the management and operation of the kmclass interferometer
- For test controls, data transfer, observation shift, etc.

Kiso Schmitt Symposium, 2017/7/06, Osamu Miyakawa

- Schedule is mostly limited by many vibration isolation systems.
 - (PR3), PR2, PRM, BS, SR3, (SR2), ETMX, ETMY
- Low temperature operation is also tight work.

KAGRA Vibration Isolation System

Kiso Schmitt Symposium, 2017/7/06, Osamu Miyakawa

KAGRA Type-A suspension installation

-> Koki Okutomi's talk on Thursday morning "Controls of the KAGRA cryogenic vibration isolation system"

KAGRA Type-A + Cryogenic Suspension

Kiso Schmitt Symposium, 2017/7/06, Osamu Miyakawa

Temperature of main cryostat at X-front @2017 Mar. 13

Operation of main storage has been started in March 2017.

Viewgraph by M.Yoshida

KAGRA Development of sensitivities

 Generally, it takes ~5years to reach the target sensitivity.