木曽シュミットシンポジウム@

東大Tomo-e Gozenと京大MUレーダーによる 超微光流星の同時観測

Shinsuke Abe⁽¹⁾, <u>Ryo Ohsawa⁽²⁾</u>, Shigeyuki Sako⁽³⁾ Johan Kero⁽³⁾, Takuji Nakamura⁽⁴⁾, Yasunori Fujiwara⁽⁴⁾ Junichi Watanabe⁽⁵⁾, Akira Hirota⁽¹⁾,

(1)Nihon University, Dept. Aerospace Eng., Japan
(2)Institute of Astronomy, The University of Tokyo, Japan
(3)Swedish Institute of Space Physics, Kiruna, Sweden
(4)National Institute of Polar Research, Tokyo, Japan
(5)National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan

Leonid Meteor Shower by Abe, Yano, NHK, NASA Leonid MAC

Sensitivity of MU Radar Meter Head-echo Observations

Kyoto University RISH MU Radar Middle and Upper Atmosphere Radar

Monostatic coherent pulse Doppler radar VHF (46.5 MHz), 1MW peak power, 475 crossed Yagi antennas Pulse length: $1-500 \mu$ s, Antenna aperture: $8330m^2$ (D=103m)

Kyoto University RISH MU Radar Middle and Upper Atmosphere Radar

Comparison of Orbits between MU Radar and Optical Observations

Object	Date	а	е	i	ω	Ω	D_{sh}
	UT	au	—	0	0	0	_
Phaethon	-	1.27	0.89	22.2	322.1	265.2	-
1-radar	Dec/14	1.27	0.89	23.6	325.1	262.6	
1-opt	15:29	1.22	0.88	23.5	325.1	262.6	0.013
2-radar	Dec/13	1.20	0.89	24.1	325.8	261.7	
2-opt	18:49	1.39	0.91	23.2	325.8	261.7	0.030
3-radar	Dec/13	1.21	0.89	22.5	324.5	261.6	
3-opt	16:14	1.26	0.88	22.7	324.5	261.6	0.037
Geminids	2010	1.30	0.899	25.0	326.1	262.3	-

Orbital determination by Meteor Head-echo and optical observation is comparable.

Abe et al. Proc. ISTS (2015)

Simultaneous observation with MU Head-echo and TV

Visual magnitude as functions of RCS

Faint Meteors Imaging ~13th magnitude

An Image containing a faint meteor (stellar sources are masked)

Detected Faint Meteors by Hough transform algorithm

Osawa, Sako, et al. (Univ. Tokyo)

Visual magnitude as functions of RCS

Faint Meteors Spectroscopy ~8-9th magnitude with R=10

