1. NIFS

- 装置仕様
- 星生成のサイエンス例

2. 前主系列星の長期モニタリング

- 研究の動機
- NIFSによる観測
- 可視分光・測光との比較
- 3. 整約ソフトウェアの改良
 - Geminiのスクリプト
 - 改善の目標

高見道弘 (ASIAA) 面分光研究会2019 2019.10.29-30

2/14

装置仕様

- ・ 0.9-2.4 µm, 波長分解能 R~5000
- · 空間分解能~0".1
 - Altair, NGS/LGS
 - コロナグラフ使用可能 (0".2/0".5-φ)
- ・視野 3"x3"
- ・ スリットスライサーを使用
 - 0".103x0".043 spaxel

Grating	Z	J	н	к
Standard Wavelength Range (µm)	0.94 - 1.15	1.15 - 1.33	1.49 - 1.80	1.99 - 2.40
Spectral Resolution	4990	6040	5290	5290

(Murakawa+13)

- 装置仕様
- 星生成のサイエンス例

2. 前主系列星の長期モニタリング

- 研究の動機
- NIFSによる観測
- 可視分光・測光との比較
- 3. 整約ソフトウェアの改良
 - Gemini のスクリプト
 - 改善の目標

研究の動機

・ 質量降着におけるジェットの役割を明らかにする

- 円盤のどこから、どのように(=どの程度)角運動量を 抜いているか?
- ・観測研究上の問題点
 - ジェットの加速領域や、
 円盤との接続領域を
 空間分解できない

(Zanni+ 2013)

NIFS による観測

CFHT-ESPaDOnS ; $\Delta v \sim 4$ km s⁻¹ @0.4-1 µm

CFHT-ESPaDOnS; Δv~4 km s⁻¹ @0.4-1 µm

Call 輝線… ピーク強度で規格化 OI 輝線… 連続放射強度で規格化 (Chou, Takami+ 2013; Takami, Wei+ 2016; Takami+ in prep.)

JD

可視高分散分光 (RY Tau)

9/14

各プロファイルは連続放射成分で規格化 (Chou, Takami+ 2013; Takami+ in prep.)

長期モニタリング・まとめ

★3つの活発な前主系列星のモニタリングを継続中

- ジェット放出 NIFS
- 円盤内縁から星への質量降着 可視高分散分光/測光

★ジェット放出と可視輝線・測光の変動の相関を発見 (?)

- ジェットの根元は、円盤内縁や星の磁場に近い
 Xウィンド、リコネクション風…○; 円盤風…x
- 輝線プロファイルの変動のさらなる理解により、
 ジェット加速メカニズムをさらに理解できる可能性あり

★可視輝線の変動を伴わないジェット放出あり

- 観測されたジェット構造に対し、別の解釈が必要?
- 可視輝線ついてもさらなる理解が必要

- 装置仕様
- 星生成のサイエンス例

2. 前主系列星の長期モニタリング

- 研究の動機
- NIFSによる観測
- 可視分光・測光との比較
- 3. 整約ソフトウェアの改良
 - Geminiのスクリプト
 - 改善の目標

Gemini の IRAF コマンド

11/14

nfprepare	?	gemarith	フレーム四則演算
gemcombine	フレーム加算	nsflat	フラット作成
nsreduce	スカイ差し引き、フラット処理	nsslitfunction	スリット関数(?)の測定
nswavelength	arc ランプのデータから	nsfdist	フレームの歪み測定
	波長テンプレートを作成		
nffixbad	バッドピクセルの除去	nsfitcoords	座標変換(?)
nstransform	座標変換の適用(?)	nfextract	1 次元スペクトルの切り出し
nftelluric	大気吸収の補正	nifcube	キューブデータ作成

Gemini の スクリプト

NIFS_baseline.py	ダーク、フラット、arcランプ、歪み補正データの整約
NIFS_Telluric.py	標準星データの整約
NIFS_Science.py	サイエンスデータの整約

フレーム選択を効率良く行いたい

クオリティ・チェックを含む

		Auto Select:	Flat on 🔽	Save Filena	ames			
Filename	Date	Ut	Auto Detect	Object	Exp.(S)	Coadds	Туре	Class
N20191017S0080	2019-10-17	14:24:31.2	partnerCal	HIP 27248	60.0	1	OBJECT	partnerCal
N20191017S0081	2019-10-17	14:25:57.7	partnerCal	HIP 27248	60.0	1	OBJECT	partnerCal
N20191017S0097	2019-10-17	15:59:49.7	Flat_on	GCALflat	8.0	1	FLAT	dayCal
N20191017S0098	2019-10-17	16:00:19.2	Flat_on	GCALflat	8.0	1	FLAT	dayCal
N20191017S0099	2019-10-17	16:00:48.7	Flat_on	GCALflat	8.0	1	FLAT	dayCal
N20191017S0100	2019-10-17	16:01:21.7	Flat_on	GCALflat	8.0	1	FLAT	dayCal
N20191017S0101	2019-10-17	16:01:52.2	Flat_on	GCALflat	8.0	1	FLAT	dayCal
N20191017S0102	2019-10-17	16:02:21.7	Flat_off	GCALflat	8.0	1	FLAT	dayCal
N20191017S0103	2019-10-17	16:02:50.7	Flat_off	GCALflat	8.0	1	FLAT	dayCal
N20191017S0104	2019-10-17	16:03:20.2	Flat_off	GCALflat	8.0	1	FLAT	dayCal
N20191017S0105	2019-10-17	16:03:49.7	Flat_off	GCALflat	8.0	1	FLAT	dayCal
N20191017S0106	2019-10-17	16:04:18.7	Flat_off	GCALflat	8.0	1	FLAT	dayCal
N20191017S0107	2019-10-17	16:05:48.7	Dark	Dark	10.0	1	DARK	dayCal
N20191017S0108	2019-10-17	16:06:21.2	Dark	Dark	10.0	1	DARK	dayCal
N20191017S0109	2019-10-17	16:08:37.2	Ronchi	GCALflat	8.0	1	FLAT	dayCal

IRAF imstat

IRAF display

改善の目標

- ・インタラクティブな部分をなるべく減らしたい
- 大気吸収補正・フラックス更正を効率良く行いたい
 - ADU-フラックス 変換係数の測定
 - 標準星 (A型星) の吸収の自動除去
 - ストレールの補正

改善の目標

- ・インタラクティブな部分をなるべく減らしたい
- 大気吸収補正・フラックス更正を効率良く行いたい
 - ADU-フラックス 変換係数の測定
 - 標準星 (A型星) の吸収の自動除去
 - ストレールの補正
- ・ サイエンスキューブを効率よく足し合わせたい
 - ディザリングによる空間シフトの自動補正
 - 波長シフトの自動補正

14/14

ソフトウェア開発・まとめ

- · python による整約ツール開発
 - pyraf, Tkinter, ttk, numpy, scipy, matplotlib, astropy 等使用
 - 1天体あたり 10-20 分の作業でキューブを作れる
 - 自身でどこまで開発する必要があったか?
 - より詳細に興味のある方は、別途ご連絡ください。
- ・ 輝線解析ツールについては、これから?