# 近赤外線面分光ユニット SWIMS IFUの開発状況

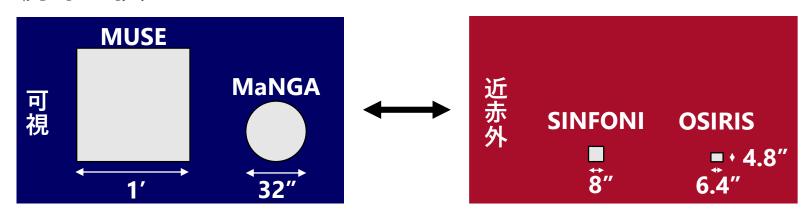
@面分光研究会 2019

櫛引洸佑(東京大学)

細畠拓也、竹田真宏、山形豊(理化学研究所)、 森田晋也(東京電機大学)、

尾崎忍夫、都築俊宏(国立天文台)、

本原顕太郎、高橋英則、河野志洋、小西真広、 加藤夏子、寺尾恭範、中村洋貴(東京大学)

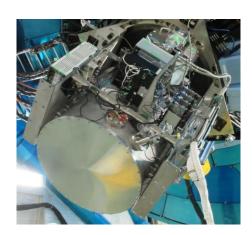

### 近赤外線面分光

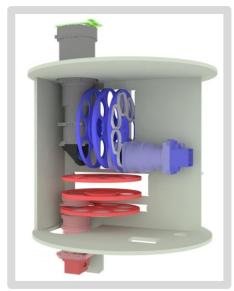
#### 近赤外線観測の利点

- ●可視に比べてダスト減光を受けにくい
- ●高赤方偏移天体の可視、UVスペクトル

#### 現状の課題

●視野が狭い

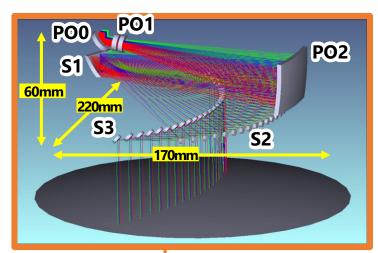




### **SWIMS**

### TAO6.5m望遠鏡の近赤外撮像分光装置 SWIMS

- ●*λ*=0.9-1.45, 1.45-2.5µm二色同時観測
- ●φ9'.6の広視野撮像
- ●最大~30天体の広波長帯域(0.9-2.5µm) スリット多天体分光
- ●IFUによる面分光(開発中)

すばる望遠鏡でのPI装置としての 運用を目指し準備中







### **SWIMS-IFU**

### スライスミラー方式 面分光ユニット

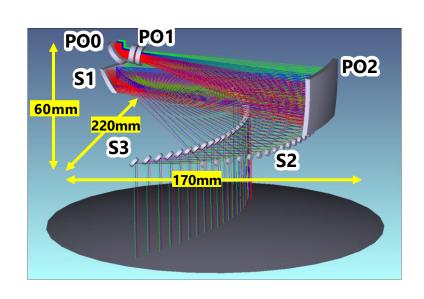
- ●広視野 17.2"×12.8" @TAO 従来装置の4倍
- ●広波長帯域 0.9 - 2.5μmを一度に分光 他装置の2倍以上の効率





### 他装置との比較

|                         | SWIMS-IFU               |             | SINFONI              | NIFS                   | OSIRIS                         |
|-------------------------|-------------------------|-------------|----------------------|------------------------|--------------------------------|
| 望遠鏡(口径)                 | Subaru (8.2m)           | TAO (6.5m)  | VLT UT3<br>(8.2m)    | Gemini North<br>(8.1m) | Keck I (10m)                   |
| 観測波長(µm)                | 0.9-1.45/1.45-2.5       |             | 1.1-2.45             | 0.95-2.4               | 1-2.4                          |
| 波長域                     | 上記全域を一度に                |             | J, H, K, H+K         | Z, J, H, K             | z, J, H, Kの<br>BBとNB           |
| $\lambda/\Delta\lambda$ | ~1000                   |             | ~3000                | ~5000                  | ~3800                          |
| 空間分解能                   | seeing limited (~ 0.5") |             | 0.250"<br>- 0.025"   | 0.1"                   | 0.10" - 0.02"                  |
| 視野                      | 14''×5.2''              | 17.2"×12.8" | 8"×8" -<br>0.8"×0.8" | 3"×3"                  | 0.32" × 1.28"<br>- 4.8" × 6.4" |


#### → 広波長域、広視野による広がった天体の効率的な観測

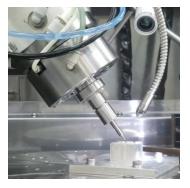
### SWIMS-IFU limiting magnitude[AB]@Subaru

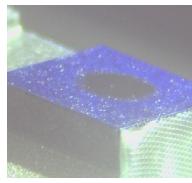
S/N=5, exptime=1hr, IFU-throughput=0.8 J=20.9, H=20.7, K=20.7

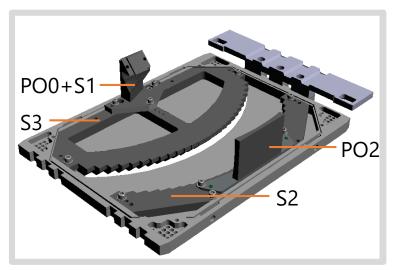
### SWIMS-IFU開発における難点

- ●小さく、複雑な全体の形状
- ●平面、球面、楕円面という 多様な形状のミラー
- ●合計80面の鏡面の位置較正 20µm、0.01degの精度
- → 通常の研磨加工では 鏡面作成が困難 アライメント機構などは 付けられない




→ 超精密切削加工による一体加工


### 超精密切削加工による一体加工


#### 超精密切削加工

- ●nmオーダーでの制御が可能
- ●切削加工のみで鏡面に仕上げ
- → ボールエンドミルにより
  必要な形状全てを加工可能
- → 一つの母材から複数の ミラーを削り出すことで 位置較正負担も軽減

80個の鏡面を4つの母材から切り出す





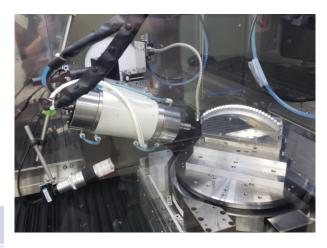


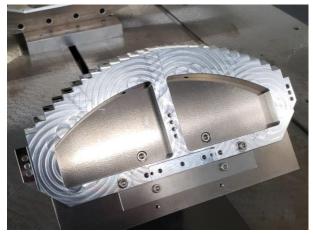
※理化学研究所 先端光学素子開発チームとの共同開発

### これまでの開発

#### 超精密加工技術の確立

- 母材:特殊アルミ合金RSA6061 (RSP Technology)採用
- ダイヤモンドエンドミルによる鏡面作成 (Kitagawa et al. 2016, Kono et al. 2018)
  - →面粗さ、面形状の評価
- ミラーアレイの加工試験
  - → ミラー間の相対位置の評価


#### → 今年3月に最初のミラーアレイが完成!!


### スリットミラーアレイ(S3)

- ●SWIMS-IFUの最終的な結像面
- ●曲率の異なる26個の球面鏡

### 加工条件(仕上げ)

| 使用加工機          | ULG-100D(5A) (理研所有) |  |
|----------------|---------------------|--|
| 使用工具(半径)       | ボールエンドミル (0.46mm)   |  |
| 送り速度 100mm/min |                     |  |
| 回転数            | 20000rpm            |  |
| ピッチ            | 10µm                |  |
| 切込み量           | 1µm × 2 回           |  |
| 使用母材           | RSA6061             |  |





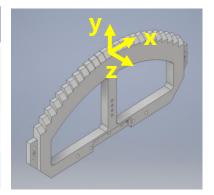
→ およそ1週間の加工期間で26面の鏡面が完成!!

# 3つの評価ポイント

| 項目           | 影響   | 定義                                | 測定方法                                                  | 要求            |
|--------------|------|-----------------------------------|-------------------------------------------------------|---------------|
| 面粗さ          | 反射率  | 空間周期<br>20µm以下の<br>高周波成分の<br>RMS値 | 干渉計<br>NewView<br>7200<br>(Zygo)                      | < 10nm        |
| 面形状          | 結像性能 | 設計形状からの<br>ずれの <b>P-V</b> 値       | 干渉計<br>Verifire<br>QPZ<br>(Zygo)                      | < 200nm       |
| ミラー間<br>相対位置 | 効率   | 設計相対位置からの<br>並進三軸各方向の<br>ずれの大きさ   | 三次元測定機<br>LEGEX<br>(Mitutoyo)<br>&<br>PFU-3<br>(三鷹光器) | 各方向<br>< 20µm |

### 評価結果

#### 面粗さ


| 平均±標準偏差 | <b>7.36</b> ±2.12nm<br><b>(要求 &lt; 10nm)</b> |
|---------|----------------------------------------------|
| 最大      | 12.84nm                                      |
| 最小      | 4.42nm                                       |

#### 面形状

| 平均±標準偏差 | <b>168.72</b> ±32.06nm<br><b>(要求&lt; 200nm)</b> |
|---------|-------------------------------------------------|
| 最大      | 277.09nm                                        |
| 最小      | 117.31nm                                        |

#### ミラー間相対位置

|                    | x                                           | у                                           | Z                                            |
|--------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
| <b>平均</b><br>±標準偏差 | <b>2.16</b> ±6.14μm<br><b>(要求&lt; 20μm)</b> | <b>1.90</b> ±2.23μm<br><b>(要求&lt; 20μm)</b> | <b>-0.30</b> ±1.65μm<br><b>(要求&lt; 20μm)</b> |
| 最大                 | 17.68µm                                     | 8.93µm                                      | 2.39µm                                       |
| 最小                 | -7.012µm                                    | -0.87µm                                     | -3.33µm                                      |



全3項目でほぼ要求精度を満たすミラーアレイが完成!!

### 瞳ミラーアレイ 加工試験

- ●SWIMS-IFUの瞳結像面
- ●12個の球面と14個の楕円面
- ●面の向きが複雑

#### 加工条件(仕上げ)

| , ,      |                     |  |  |
|----------|---------------------|--|--|
| 使用加工機    | ULG-100D(5A) (理研所有) |  |  |
| 使用工具(半径) | ボールエンドミル (1.0mm)    |  |  |
| 送り速度     | きり速度 100mm/min      |  |  |
| 回転数      | 25000rpm            |  |  |
| ピッチ      | 10μm                |  |  |
| 切込み量     | 1μm × 2 回           |  |  |
| 使用母材     | A6061               |  |  |





→ およそ1週間の加工期間で26面の鏡面が完成!!

## 今後の展望

| 年度   | 製作物                                                             |                                                           | 試験、観測                                                        |                                                      |
|------|-----------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
|      | 前半                                                              | 後半                                                        | 前半                                                           | 後半                                                   |
| 2019 |                                                                 | ・ 瞳ミラー<br>アレイ( <b>S2</b> )                                |                                                              | • S2結像試験                                             |
| 2020 | <ul><li>PO2ミラー</li><li>PO1レンズ (外注)</li><li>全体構造体 (外注)</li></ul> | <ul><li>スライス<br/>ミラーアレイ<br/>(S1)</li><li>PO0ミラー</li></ul> |                                                              | <ul><li>組み上げ<br/>完成</li><li>実験室での<br/>性能試験</li></ul> |
| 2021 | <ul><li>観測用ソフト</li></ul>                                        | • 解析ソフト                                                   | <ul><li>SWIMSに<br/>インストール</li><li>試験観測<br/>@Subaru</li></ul> | • 性能評価                                               |
| 2022 |                                                                 |                                                           | <ul><li>共同利用<br/>科学観測<br/>@Subaru</li></ul>                  | ・ SWIMS<br>TAO移設                                     |