

頂いたお題

● 初期世代星

ガンマ線バースト

● 超新星爆発

・晩期型星(ごめんなさい) ・装置ありきではなく、サイエンスから

<u>装置 => サイエンス</u>

TMTサイエンス検討会報告書 / SPICA proposal

First Star

L ~ 10⁶ - 10^{7.5} Lsun (for 100-1000 Msun)

(e.g., Bromm+01, Stiavelli+09, Bromm & Yoshida 11, Rydberg+11)

First Supernova L ~ 10¹⁰ Lsun

"Superluminous" Supernovae

(Quimby+10, Pastorello+10)

MT, Moriya, Yoshida+12

 $10^{-4} - 10^{-3}$

MT, Moriya, Yoshida+12

IMF by Number Count of Supernovae

* Completeness * SN rate Transient survey with Subaru/HSC

Detecting First Supernovae

AB = 26.5/25.5 mag (@ I-4 um) 2000 deg² 6 visits in 0.5 yr

Redshift

(個人的) 2020年代の恒星研究

SPICA

赤外サーベイヤー

Euclid/WISH/WFIRST

Deep survey

初代星の超新星爆発

Long GRB

Short GRB

Pop III GRBs Cosmology

Yonetoku-san's poster

Optical Counterpart of GW Source?

~19 mag (@ 200Mpc)

Monitoring nearby Universe with high cadence

Transient Survey

Survey	Diameter (m)	FOV (deg ²)	Depth (R mag)	Area/day (deg ²)
LOSS	0.76	0.01	19	1000 galaxy
ROTSE-III	0.45	3.42	18.5	450
PTF	1.26	7.8	21	1000
Pan-STARRS	I.8	7	21.5	6000
SDSS-II	2.5	I.5	22.6	150
SNLS	3.6		24.3	2
GOODS	2.5 (HST)	0.003	26	0.04
HSC	8.2	I.75	26.5	I.75
KISS	1.08	4	21	100

(partly taken from Rau et al. 2009, PASP, 121, 1334)

Survey area (deg²)

Survey area (deg²)

KISS: KISO Supernova Survey

• Extremely high-cadence SN survey

- Time: I-hr cadence
- Area: ~50-100 deg² /day

 Depth: ~ 20-21 mag in g-band (3 min exposure) OK (?) all sky? galaxy monitor? OK

Kiso Schmidt

telescope

2012 Apr -PI: T. Morokuma (see poster)

Optical-GW Astronomy

Dedicated Im-class telescopes

- Survey method
 - Blank field survey
 - Targeted survey
- Time resolution
 - CCD => CMOS?

Blank field surveyTargeted survey400 deg²/telescope40 galaxies/telescope=> several tens of telescopes!?

(個人的) 2020年代の恒星研究

SPICA

赤外サーベイヤー

Euclid/WISH/WFIRST

Deep survey

初代星の超新星爆発

重力波源 超高頻度モニタリング Follow-up I-2 m望遠鏡 4-10 m望遠鏡

Multi-messenger Astronomy (EM+GW+Neutrino)

Galactic SN rate ~ I SN / I00 yr

$$R_{\rm SN}(z) = \rho_*(z) \frac{\int_{M_{\rm min,SN}}^{M_{\rm max,SN}} \psi(M) dM}{\int_{M_{\rm min}}^{M_{\rm max}} M \psi(M) dM}$$

I (Msun/yr) 0.0I (/Msun)

IR monitoring Galactic center with high cadence

(Matunaga+11)

GRB-SN connection

GRB 980425/SN 1998bw (z=0.0085) GRB 030329/SN 2003dh (z=0.1685) GRB 031203/SN 2003lw (z=0.105) XRF 060218/SN 2006aj (z=0.033) GRB 100316/SN 2010bh (z=0.0591) GRB 120422/SN 2012bz (z=0.283)

GRB-SN @ z > 0.5

TMT with ...

Rapid ToO
Opt-NIR spectrograph
Polarization

(個人的) 2020年代の恒星研究

SPICA

赤外サーベイヤー

Euclid/WISH/WFIRST

Deep survey

初代星の超新星爆発

Multi-messenger"
 重力波源
 超高頻度モニタリング → Follow-up
 I-2 m望遠鏡 4-10 m望遠鏡

GRB-SN @ z > 0.5 即応観測 30 m望遠鏡

(個人的) 2020年代の恒星研究

- 初代星の超新星爆発
 - 近赤外サーベイ
- 光赤外+重力波天文学
 - 近傍銀河の高頻度モニタリング
- "Multi-messenger" 天文学
 - 銀河中心の赤外線モニタリング
- ガンマ線バースト+超新星 @ z>0.5
 - 30m級望遠鏡での即応観測 + 可視赤外同時 + 偏光

「広さ」+「深さ」+「時間」

Supernova and IR Emission

Heavy elements

Kinetic energy

Radiation

<u>Supernova</u> <u>dust</u>

IR observation

Dust formation by stellar wind / SN

ircumstellar

dust

Prospects for SPICA (SN at 5 Mpc)

MT, Nozawa, Sakon, Onaka+12, ApJ, 759, 173

(個人的) 2020年代の恒星研究

赤外サーベイヤー

Euclid/WISH/WFIRST

Deep survey

SPICA

初代星の超新星爆発

Multi-messenger" 重力波源 超高頻度モニタリング → Follow-up I-2 m望遠鏡 4-10 m望遠鏡

GRB-SN @ z > 0.5

ダスト形成

即応観測 30 m望遠鏡