

東京大学アタカマ天文台 (TAO)計画

東京大学 天文学教育研究センター 酒向重行、TAO計画グループ

「グローバルな宇宙天文観測」研究会、2012年2月20日、国立天文台すばる棟大セミナー室

アウトライン

- はじめに
- 赤外線で宇宙を見る
- TAO計画のあゆみ
- miniTAOの今
- miniTAOからTAOへ

- 世界最高所の天文台
- 南米チリアタカマ高地
 チャナントール山
- 標高5,640m
- ・ 口径6.5mの大型赤外線

 望遠鏡を建設

TAOが切り開く宇宙

Origins of Galaxies and Planets

Where do we come from? Where are we going?

the Univ. of Tokyo Atacama Obs.

TAO

口径1.0-m miniTAO 望遠鏡

TAOサイトの開拓を目的としたパイロット望遠鏡

赤外線で宇宙を見る

我々は、なぜアタカマに辿り着いたのか?

次の10年に託された課題

ロ 銀河の誕生と進化

近赤外線多色広視野撮像で探る銀河の進化,多天体分光サーベイで探るz~2 銀河の星形成史,遠方赤外線銀河のダスト放射物理の解明,サブミリ波銀河と 隠された星形成史,Paで探る近傍宇宙の星形成パノラマ,超巨大質量ブラック ホール進化,Fe ii/Mg ii 輝線強度比の測定による第一世代星形成時期の推定, ダストに埋もれた活動銀河核の探査,変光現象で探る活動銀河核の構造と進化, 近赤外超新星サーベイ,近傍超新星の測光・分光観測, la 型超新星による宇宙 膨張測定,活動銀河核の変光観測による宇宙膨張測定,宇宙論的な観測

ロ 惑星の誕生と進化

トランジット観測による系外惑星の性質解明,トランジット周期変動(TTV)法,小・ 中質量星の星惑星形成,大質量星の星惑星形成,星と星間物質,星間ダスト の供給問題,大質量星の進化とダスト形成,中小質量星の進化とダスト形成, 分子雲におけるダスト形成,原始惑星系円盤の時間変動,太陽系内小天体、 金星,木星,彗星,小惑星

次の10年に託された課題

ロ 銀河の誕生と進化

ダークマターに支配された暗黒の宇宙で、銀河はどのように生まれ、そして現在の姿へと進化しえたのか?銀河の進化を支えた立役者とは?

赤方偏移 高感度 赤外線 観測

存在の普遍性が確固たるものとなった系外惑星。同時に見えてきた多 様性は何が引き起こしているのか?生命につながる手がかりとは?

回折限界 $d_{PSF} \sim \lambda$ / D

測定され るPSF

余分な背景成分が混入するため 感度も劣化する point spread function

地球大気による赤外線の吸収

- ・ 地球の大気(分子、電離ガス)などにより、宇宙からの電磁波は吸収される。
- ・ 標高の高い場所では、上空の大気が薄くなるため吸収の影響が減少する。

上空の水蒸気量と標高の関係

可降水量 PWV (precipitable water vapor)

地球大気の窓

赤: VLT望遠鏡サイト 標高2600m (PWV = 2.0mm) **黒**: TAOサイト 標高5640m (PWV = 0.5mm)

背景放射によるノイズ

背景放射の強度

高感度赤外線望遠鏡 TAO

地球上で最も赤外線観測に適した サイトに、大型赤外線望遠鏡を建設 する計画

チリ共和国 アタカマ高地 チャナントール山 標高5,640m

TAO計画のあゆみ

東京大学 天文学教育研究センター

東大天文センターのTAOメンバ

- 教授(3名) 吉井(P.I.、センター長)、土居、河野
- 准教授(4名)
 川良、田中、宮田、本原
- 助教(6名) 田辺、<u>峰崎、**酒向**、諸隈</u>、田村、<u>小西</u>
- 研究員(5名) 高橋、越田、上塚、松永、三戸
- 技術職員(4名) 青木、征矢野、樽沢、加藤
- •大学院生(>5名)中村、浅野、内山、舘内、岡田…

TAO計画の推進体制

The images are from Google Earth and Google Map

世界で最も乾燥した町

サンペドロ・デ・アタカマ

TAO計画のベースキャンプ

年間降水量は10mm

2002

Reached the Summit of Mt. Chajnantor

2006

Road to the TAO

5.7 km to the summit

Google Earth

In prior to the 6.5-m TAO telescope, Completion of the 1.0-m miniTAO

2009

2009年、

miniTAO望遠鏡は、

ギネスブックに

「世界最高所の望遠鏡」 として登録。

The highest astronomical observatory is the University of Tokyo Atacama Observatory, located at an altitude of 5,640 m (18,503 ft) on the summit of Cerro Chajnantor in a scientific reserve called Atacama Astronomical Park, Chile. The observatory houses a 1 m (3 ft 3.37 in) infrared telescope called <u>miniTAO</u>, which saw first light on 23 March 2009.

GUINNESS WORLD RECORDS

miniTAOの開所式

2010年7月7日 チリ共和国サンティアゴにて

東京大学、チリ科学省、外務省、在チリ日本 大使館、各種企業関係者 (参加者 約140名)

記念切手を発行

miniTAOの今

チャナントール山 標高5,640m

22° 59'13.43" S 67° 44'04.99" W 標高 5308 m

高度

7.45 km

日が沈むと、

miniTAO望遠鏡

- TAOに向けた科学的、技術的試験 望遠鏡
- 口径1.0m
- リッチークレチアン光学系
- ・ 視野φ10′, F/12
- 観測装置
 - 近赤外線装置 ANR (小西講演)
 - 中間赤外線装置 MAX38 (浅野講演)
- 突発天体、太陽系内天体にも対応

• 20フィートコンテナ (L6.1m x W2.4m x H2.6m)

ドームスリットを 開けると、

サイト調査の結果

- 気温 -20 ℃ -5 ℃
- 晴天率 82% (測光夜63%)
- 可降水量(PWV) 0.5-0.25mm
- 風速 10 m/s(typ.)
- シーイング 0.69" (median, 可視)

Motohara+ 2008, Miyata+ 2008

世界で最も赤外線観測に適したサイトの1つと言える

高山による問題

- 集中力低下、体力の消耗
- イライラする。すぐに喧嘩。

→ ・酸素吸入を義務化
 (標高~4,000mまで回復)
 ・山頂作業は4人、車2台以上で
 ・山頂滞在は8時間まで

<u>ハードウェア障害</u>

- HDDの機械的クラッシュ
 ⇒ SSDに変更
- 空気への放熱効率の低下(熱暴走)
 低温、強い紫外線

往復4時間の運転

山頂とサンペドロを無線LANで接続 2011年6月

サンペドロ仮山麓施設

1.0m-miniTAO用山麓施設 遠隔観測を行う

山麓から見たminiTAO

6.5m-TAO用山麓施設 建設予定地

山麓からの遠隔観測の効果

2011年6月より開始

最近2年間のアタカマでの活動

<u>2010年</u>

- ・5-6月(2か月) 観測 スタッフ + PD 5人,大学院生 3人
 うち、組織的若手派遣 2人(2か月以上)
 4人(2か月未満)
- ·7月7日 開所式
- 9-10月(2か月) 観測 スタッフ + PD 7人, 大学院生 3人
 うち、組織的若手派遣 2人(2か月以上)
 3人(2か月未満)

<u>2011年</u>

- ・2月(1週間) 整備 スタッフ 2人
- ・4-6月(2か月) 観測 スタッフ + PD 8人, 大学院生 5人
 うち、組織的若手派遣 2人(2か月以上)
 5人(2か月未満)
- 9-11月(2か月) 観測 スタッフ + PD 10人,大学院生 6人 うち、組織的若手派遣 2人(2か月以上) 5人(2か月未満)
- ・12-1月(2か月) 整備 組織的若手派遣 1人(2か月以上)

mini-TAOからTAOへ

6.5m-TAO望遠鏡

- 口径6.5m
 - Magellan 6.5m (チリ)がモデル
 - EIE (イタリア)で初期検討
 - 国内企業で本検討開始
- 光学パラメータ
 - 口径6.5m, 赤外線仕様
 - F/12.2, Ritchey-Chretien光学系

 - 視野φ25
- 3焦点
 - ナスミス 赤外
 - ナスミス 可視
 - カセグレン中間赤外
- 予算措置後、6年間で建設

6.5m-TAOの設計検討

現在、シミュレーションによる設計検討を進めている。 基本パラメータ(サイズ、重量など) 駆動機構の設計

FEM計算・・・

6.5m-TAOの科学的戦略

Ω視野面積 [arcmin²]

近赤外線: 広視野

中間赤外線: 高空間分解能

現在、2台の観測装置を開発中

TAO装置開発用の新実験棟

東京大学天文学教育研究センター(三鷹)の敷地内に、2011年3月に完成

近赤外線広視野多天体分光器 Simultaneous-color Wide-field Infrared Multi-object Spectrograph

広視野 + 近赤外線 2色同時観測 + 多天体分光ユニット

Specificat	ions of SWIMS	From Telescope
Observation Mode	Imaging and multi-object spectroscopy	
Dimensions, weight	$2.0 \text{ x} 2.0 \text{ x} 2.0 \text{ m}^3$, 2.5 tons	
Field of View	φ9.6 arcmin	
Spatial Resolution	0.12 arcsec/pixel	
Wavelength Range	0.9-1.4 / 1.4-2.5 μm (blue/red channel)	
Detector	MCT 2k x 2k x 8	6000
Filters (broad-band, narrow-band)	<i>Y</i> , <i>J</i> , <i>H</i> , <i>K</i> _s , <i>N</i> 129, <i>N</i> 133, <i>N</i> 1875, <i>N</i> 195	
Spectral Resolution	Blue : R ~ 700 – 1,000 Red : R ~ 500 – 900	
Number of slit masks	~ 20 (including long slit masks)	
MOS multiplicity	~ 30 objects/mask	
Expected Total Throughput	Imaging: 31%, Spectroscopy: 20%	EaV Lavout
Expected limiting AB magnitudes		Fov Layout
Imaging (1hr, S/N=5)	<i>Y</i> =25.0, <i>J</i> =24.2, <i>H</i> =23.4, <i>K_s</i> =23.7	
Spectroscopy	$Y=23.3, J=22.4, H=22.2, K_s=21.9$	09–14 \$\phi_6\$ arcmin
(1hr, S/N=5, R=1,000)		$1.4 - 2.5 \mu m$ 4x H2RG

Wide-field image slicer-type IFU (~100arcsec²) in a conceptual design phase.

Redshift ~ 3-1

the era of dramatic galaxy evolution

- 現在の星の総量の約半分が形成された時代
- dusty galaxyが増加、爆発的星形成(>100-1,000 M_{sun}/yr)
- z~2に多くのAGNが分布

この時代、なぜ銀河は活動的な状態を維持できたのか?

SWIMS広視野サーベイ計画

• z~1-3の包括的な銀河カタログの作成をおこなう

①多色近赤外線撮像サーベイ

- >3 deg² (\sim 7x10⁷ Mpc³)
- >100 clusters, 20,000 galaxies
- 400 nights
- ② 多天体分光ユニットによる近赤外線分光 フォローアップ
 - R \sim 500 1,000
 - > 2,000 galaxies
 - 400 nights

すばる望遠鏡多天体分光装置の画像

• 望遠鏡の運用時間をサーベイ観測へ集中的に投入する

Mid-Infrared Multifield Imager for gaZing the UnKown Universe

高解像度 + 30µm帯観測 + 高精度測光/分光観測

Specifications of MIMIZUKU	
Observation Mode	Imaging and spectroscopy
Dimensions, weight	2.0 x 2.0 x 2.0 m ³ , 2.3 tons
Channel / Wavelength coverage	NIRchannel : 2-6 μm MIR-S channel: 6-26μm MIR-L channel: 26-38μm
Detector	InSb 1k / Si:As 1k / Si:Sb 1k
Field of View	2'x2' (normal mode) 1'x2' x2fields (w/ Field Stacker)
Spatial Resolution	0.3" @10um / 1.0" @30um
Spectral Resolution	R ~ 250 (N-band/Q-band/30um-band)
1sig1sec Sensitivity Imaging (R~10) Spectroscopy (R~250)	30mJy@10um/ 130mJy@20um/ 0.5Jy @30um 150mJy@10um/ 0.6Jy @20um / 1.5Jy @ 30um

λ=10μm@30m-TMT:解像度0.1"→ hot/warm inner領域 < 10AU λ=30μm@6.5m-TAO:解像度1.0"→ cold outer領域 < 10AU

2台のピックアップ鏡により、 ϕ 25'以内の任意の2視野を同時観測

- 基準光源(天体)と同時に、目標天体を観測できる 地球大気の変動の影響を除去
 - → 高精度の測光、分光観測を実現

中間赤外線源の多くは短時間に変光しているようだ 惑星やダストの起源への手がかり

チリのピニェラ(Piñera)大統領が日本を訪問

President Piñera…, stating that the Tokyo Atacama Observatory (TAO) Project, a cooperation project in the field of astronomy, is well-received in Chile.

http://www.mofa.go.jp/region/latin/chile/ apec2010_sm.html

…ビニェラ大統領は、mini-TAO望遠鏡の完成は学術 交流の象徴として高く評価しており、口径6.5メートルの 大型赤外線望遠鏡の実現にはチリ政府においても大き な期待を抱いていると述べました。

http://www.u-tokyo.ac.jp/public/ archive2010_j.html

本講演の内容

- 赤外線で宇宙を見る
- TAO計画のあゆみ
- miniTAOの今
- miniTAOからTAOへ

観測成果 ⇒ 近赤外線(小西)、 中間赤外線(浅野)