ニュートリノ天文学の 進展と今後の展望

東京大学宇宙線研究所 神岡宇宙素粒子研究施設 小汐由介

様々なニュートリノ源

太陽/超新星 ニュートリノ天文学の 進展と今後の展望

東京大学宇宙線研究所 神岡宇宙素粒子研究施設 小汐由介

太陽ニュートリノ

太陽ニュートリノ

太陽内部での核融合反応

$4p \rightarrow ^{2}He + 2e^{+} + 2v_{e}$

(~6.6x10¹⁰neutrinos/sec/cm²)

太陽ニュートリノ観測の特徴/意義 発生後、約8分で地球に到達 気
太陽内部を'リアルタイム'で観測できる
太陽(恒星)のエネルギー発生 メカニズムの解明に不可欠
素粒子ニュートリノ自身の性質の解明

実際には pp chain, CNO cycle を通して起こる

12年2月20日月曜日

12年2月20日月曜日

1970~90年代の太陽ニュートリノ実験

Chlorine (US)

Kamiokande (Japan)

Gallium (Italy / Russia)

2000年代

Super-Kamiokande

電子弾性散乱 (ES) $\nu_{e,x} + e^- \rightarrow \nu_{e,x} + e^-$ 入射ニュートリノの方向を保存 高統計、高精度の測定 電子ニュートリノ反応断面積は 他のニュートリノの~7倍

SNO 1000t 重素

FIG. 32: Allowed region in solar parameter space $(\theta_{12}, \Delta m^2)$ obtained by the three-flavor analysis. The thick lines and

現在/今後の課題

<u>ニュートリノの性質</u> * ニュートリノ振動パラメータの精密測定

* 7Be, pep太陽ニュートリノ測定→Borexino

* スペクトルの歪み/フラックス昼夜変動→Super-K (横澤さん)

* エキゾチックなモデルの検証

* Sterile neutrino? Neutrino vs anti-neutrino? etc.

現在/今後の課題

天体物理学の観点から

* 太陽モデルの検証

* 重い元素の量に大きな不定性 →CNOサイクルの測定が重要

重元素量比の異なるモデルによる 太陽ニュートリノフラックスの違い

	(z/x	0.0229	0.0165)	
		GS98	AGS05	
рр		5.97x10 ¹⁰	6.04x10 ¹⁰	
	рер	1.41x10 ⁸	1.45x10 ⁸	
	hep	7.90x10 ³	8.22x10 ³	
~10%	⁷ Be	5.07x10 ⁹	4.55x10 ⁹	
	⁸ B	5.94x10 ⁶	4.72x10 ⁶	
~30%	¹³ N	2.88x10 ⁸	1.89x10 ⁸	
	¹⁵ O	2.15x10 ⁸	1.34x10 ⁸	
	¹⁷ F	5.84x10 ⁶	3.25x10 ⁶	

Recap on solar abundance (models) problem

Sereneri, Flax for Liperia-Garay (2011)

- -Z leads to models with
- blems:
- ound speed & dens. profiles

現在/今後の課題

天体物理学の観点から

* 太陽モデルの検証

* 重い元素の量に大きな不定性 →CNOサイクルの測定が重要

重元素量比の異なるモデルによる 太陽ニュートリノフラックスの違い

	(z/x	0.0229	0.0165)	
		GS98	AGS05	
рр		5.97x10 ¹⁰	6.04x10 ¹⁰	
	рер	1.41x10 ⁸	1.45x10 ⁸	
	hep	7.90x10 ³	8.22x10 ³	
~10%	⁷ Be	5.07x10 ⁹	4.55x10 ⁹	
	⁸ B	5.94x10 ⁶	4.72x10 ⁶	
~30%	¹³ N	2.88x10 ⁸	1.89x10 ⁸	
	¹⁵ O	2.15x10 ⁸	1.34x10 ⁸	
	¹⁷ F	5.84x10 ⁶	3.25x10 ⁶	

Laboratori Nationali del Gran Sasso

12年2月20日月曜日

Borexino

2007年実験開始

観測対象 ✓ <u>太陽ニュートリ</u>ノ ✓ 地球ニュートリノ ✓ 超新星ニュートリノ 等々

<u>液体シンチレータ:</u> 270 t PC+PPO (1.5g/l) Inner nylon vessel (R=4.25m) •高い発光量~500p.e./MeV •極限まで放射性物質を低減 (U, Th...) <10⁻¹⁶g/g

> <u>Buffer region:</u> PC+DMP quencher (5g/l) 4.25m<R<6.75m

> <u>Outer nylon vessel:</u> R=5.50m (²²²Rn Barrier)

<u>Stainless Steel Sphere:</u> R=6.75m 2212本の8インチ光電子増倍管

light guide cone. 1350m³

 $\frac{Water tank:}{\gamma}$ and n shield. 2100m³ μ water Cherenkov detector 208 PMTs in water

太陽ニュートリノ観測

年2月19日日曜日 12年2月20日月曜日

将来の実験

project	target for solar $\boldsymbol{\nu}$	current status / recent information		
pep/CNO (ES)				
SNO+	1kt LS	under construction (cf. M.Chen's talk)		
KamLAND2	1kt LS	will be after KamLAND-Zen (cf. Y.Gando's talk)		
pp(ES)				
XMASS	10 ton(FV) Lq. Xe	commissioning of XMASS-I (total 1ton, ~0.1ton FV)		
CLEAN	50 ton Lq. Ne	MiniCLEAN is under construction		
HERON	10 ton Lq. He	will not built a full detector (Astropart. Phys. 30, 1 (2008))		
pp/7Be(CC)				
LENS	10ton 115In	R&D (In loaded LS)		
IPNOS	115In	R&D (InP cell + Lq. Xe detector)		
MOON	1.5~3ton 100Mo	R&D (EC branch of 100Tc was measured)		
Next generation				
Water Cherenkov Megaton water		LOI from Hyper-K (arXiv:1109.3262)		
Lq. Scintillator ~0.1Mton LS		white paper from LENA (arXiv:1104.5620)		
Lq. Argon	~0.1Mton Lq. Ar			

ES: elastic scattering, CC: charged current, LS: liquid scintillator

(Y.Takeuchi, LowNu2002, Seoul, Korea)

超新星ニュートリノ

超新星1987A

大マゼラン星雲

超新星爆発のメカニズム が実証された

超新星爆発ニュートリノ

- * ニュートリノは重力崩壊型の超新 星爆発で放出される。
- * 解放される重力エネルギー
 (~3x10⁵³erg)の大部分(~99%)は
 ニュートリノにより放出される。
 - * 全タイプのニュートリノ
 - * エネルギー:~10MeV
 - * 放出時間:~10sec.

T.Totani et. al., Astrophys. J. 496, 216 (1998)

超新星ニュートリノ検出器

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BOONE	Scintillator	USA	0.7	200	Running
Icarus	Liquid argon	Italy	0.6	60	Running
HALO	Lead	Canada	0.079	20	Under construction
NOvA	Scintillator	USA	15	3000	Construction started
SNO+	Scintillator	Canada	1	300	Under construction

(K.Scholberg, LowNu2002, Seoul, Korea)

ーパーカミオカン

~7300 ev (逆ベータ崩壊) ~300 ev (電子弾性散乱) ~360 ev (¹⁶0 NC *r*) ~100 ev (¹⁶0 CC)

@10kpc SuperNova, 5MeV threshold

ーパーカミオカン

For Betelgeuse

超新星背景ニュートリノ

宇宙開闢からの超新星爆発によるニュートリノ

12年2月20日月曜日

GADZOOKS!

SKにGdを溶かすことで、バックグラウンドを落とす

テストタンクによるR&D中

12年2月20日月曜日