高赤方偏移クエーサーの光度 距離測定

東大天文センター助教 峰崎 岳夫 And collaborators

高赤方偏移天体の光度距離測定によ る宇宙論

ガンマ線バーストの例

個々のGRBの距離測定精度に課題

The highest redshift quasar

ULAS J1120+0641 (z=7.09)

今後のサーベイによる サンプル増加を期待 Mortlock + 11 Gemini GNIRS spectrum

AGNの構造とスペクトル

Reverberation mapping for dust torus

ダストトーラス内径 - 放射平衡でダスト温度が決まる - ダストの昇華→トーラス内縁を形成 - トーラス内径の光度依存性 ダストの物性 $\pi a^2 \times Q_{abs} \xrightarrow{L_{disk}} = 4\pi a^2 \times Q_{abs}$ c∆t **Dust reverberation mapping** - 降着円盤放射をトラス内縁のダス トが吸収、赤外線で再放射 - 紫外可視変光→近赤外線変光

- 変光遅延時間 = light travel time

遅延時間一光度関係

- 遅延一 光度関係
 - ダスト温度の放射
 平衡、ダスト昇華
 によるトーラス内縁
 の形成を確認
 - Intrinsic scatter ~
 0.14 dex
- $r(dust,K) > r(H\beta)$
 - AGN 統一モデルの
 直接証拠
- z<0.6 までダストトー
 ラス遅延測定あり

Log 放射領域半径(light-days)

可視光度(erg/s)

活動銀河核の光度距離測定

Preliminary

- ハッブル定数 by dust reverberation
 - H₀=73 [km/s/Mpc]

±3(ran)±6(sys)

– 紫外線可視連続放
 射スペクトルの測定
 による系統誤差の
 減少が期待できる

後退速度(km/s)

光度距離(Mpc)

Reverberation mapping for BLR

BLR の領域半径

Photoionization: U parameter 一定

$$U = \frac{Q(H)}{4\pi R^2 c n_e}, \quad Q(H) = \int_{\nu_1}^{\infty} \frac{L_{\nu}}{h\nu} d\nu \longrightarrow R \propto L^{1/2}$$

- Broad emission lineの可視連続光に対する遅延測定
 - 変光遅延時間 = light travel time → BLR 領域半径

BLR雲の密度は観測的には決まらない →距離梯子(Cepheid, SNIa, dust RM・・)が必要

- BLR 遅延一光度関係
 - Intrinsic scatter \sim 0.14 dex (Bentz+ in prep.)

BLR RM によるAGN距離測定

 Watson+11

 Hβ輝線(z<0.3)
 ハッブル図
 ハッブル定数は 求めず)

BLR RM:より遠方に

- Kaspi+07
 - CIV reverberation for a z=2.2 quasar (S5 0836+71)

 $\Delta t obs (CIV) \sim 600 days$

- Czerny+12
 - MgII, CIV emission line RM による dark energy 測定の feasibility 調査

Reververation mapping による high-z quasar の光度距離測定

- TAO での観測可能性
 - 大口径 6.5m による高い感度
 - 高赤方偏移→赤外線観測が重要に

1-2µmの連続的な窓; 3-5µmの窓

- 柔軟な観測モードに対応、長期モニター観測を実現

"Super-MAGNUM"

Reververation mapping による high-z quasar の光度距離測定

- TAO での観測可能性
 - 1-2μm の連続的な窓

異なる輝線間のキャリブレーションに有利

- 3-5µm の窓

モニター観測による high-z quasar の光度 距離測定

- ・ SWIMS による長期分光モニター観測
 - Broad emission lines の reverberation mapping "AGN 距離梯子"
 - H α , H β (z <~ 3.5); MgII, CIV (z >~ 3)
 - 原理的には z=7 まで可能

expected $\Delta t rest \sim 200 days$ for ULAS J1120+0641

- MIMIZUKUによる長期測光モニター観測
 - Dust torus \mathcal{O} reverberation mapping

光度距離の直接測定

Thermal dust emission (z<2)

まとめ

- 赤外線分光測光長期モニター観測による high-z quasar の光度距離測定
 - Toward z~7; 光度距離直接測定 → AGN 距離梯子
 - TAO の特徴を活かした観測
 - SWIMS : Broad emission lines \mathcal{O} RM
 - MIMIZUKU : Dust reverberation mapping
- 準備
 - ターゲット選定、予備観測
- By products
 - 分光変光データによる放射変光機構の理解
 - Reverberation black-hole mass @ high-z →AGN進化
 - AGN 物理の理解→光度距離測定精度の向上