TAO近赤外線観測装置ワークショップ

- 日時: 2009年9月11日(金) 10:00 17:30 場所: 東京大学 天文学教育研究センター三鷹 講義室

東京大学ではチリ・アタカマの標高 5,640m に口径 6.5m の大型光学赤 外線望遠鏡を建設する TAO 計画を進めています¹。

今年度より、6.5m TAO 望遠鏡用の近赤外線装置(仮称 TAO-NIRCAM) の開発を本格的に開始する事になりました。本装置は、マウナケア山に も勝るサイトの特長を活かした近赤外線観測を行うもので、東京大学の みならず、日本のコミュニティに共同利用観測で開放される予定です。

TAO-NIRCAMが日本のユーザーに広く使用される観測装置となるように、今回、以下の日程でワークショップを開催し、ユーザーの皆様のご意見を伺う機会を設けました。本ワークショップにて、TAO-NIRCAM 装置仕様の多くの部分を決める予定です。

TAO近赤外線観測装置開発班

本原・土居・小西

 $^{^{1} \}rm http://www.ioa.s.u-tokyo.ac.jp/TAO/$

プログラム

12:30 - 12:50 銀河考古学 I 銀河系 有本

遠方銀河・銀河団

12:50 - 13:10	遠方銀河($z>4$)の観測	嶋作
13:10 - 13:30	TAO 近赤外線による遠方銀河の探査	太田
13:30 - 13:50	TAO 近赤外線観測装置による遠方銀河団・銀河群の大規模探査	小山
13:50 - 14:10	TAO 近赤外線観測装置による原始銀河団の研究	児玉

14:10 - 14:20 休憩

AGN・超新星

14:20 - 14:40	東京大学アタカマ望遠鏡による活動銀河核研究	長尾
14:40 - 15:00	FeII/MgII から探る宇宙の化学進化	鮫島
15:00 - 15:20	Near-Infrared Frontiers of Supernova Study	前田
15:20 - 15:40	NIR Variability Surveys for AGN and SNe	諸隈

15:40 - 15:55 休憩

他波長連携

15:55 - 16:15	ALMA 時代における TAO 近赤外カメラでのサブミリ銀河観測	五十嵐
16:15 - 16:35	AKARI/SPICA との連携	和田

総合討論

16:35 - 17:30 総合討論

本原

参加者(敬称略)

長尾透	愛媛大学
西浦慎悟	東京学芸大学
太田一陽	理化学研究所
小野寺仁人	CEA/Saclay
東谷千比呂	東北大学
長谷川直	JAXA
和田武彦	JAXA
諸隈智貴	国立天文台
児玉忠恭	国立天文台
有本信雄	国立天文台
山下卓也	国立天文台
佐々木敏由紀	国立天文台ハワイ
岡本桜子	東京大学/国立天文台
小山佑世	東京大学
林将央	東京大学
嶋作一大	東京大学
加藤大輔	東京大学
前田啓一	東京大学
田中培生	東京大学
川良公明	東京大学
五十嵐創	東京大学
鮫島寛明	東京大学
松永典之	東京大学
廿日出文洋	東京大学
越田進太郎	東京大学
浅見奈緒子	東京大学
酒向重行	東京大学
三谷夏子	東京大学
峰崎岳夫	東京大学
土居守	東京大学
本原顕太郎	東京大学
小西真広	東京大学

TAO-NIRCAM概要

本原顕太郎、小西真広、酒向重行、三谷夏子、 ほかTAOチーム(東京大学)

1. TAO 6.5m望遠鏡計画

 ◆ チリ・チャナントール山頂(5640m)に6.5m望遠鏡を 設置:世界最高地点の光赤外望遠鏡

◆ マウナケアを超える赤外線性能

- 低い水蒸気量(0.5mm) ⇒高い赤外線透過率
- 良好なシーイング ⇒0.69" median

- ◆ 光学系 : Cassegrain with Ritchey-Chretien
- ◆ 最終F : 12.2 ← すばるカセグレン焦点と同じ
- ◆ 主鏡サイズ : 6,500 mmφ (有効径 6,154mm)
- ◆ 主鏡F : 1.25
- ◆ 副鏡サイズ : 897mmφ
- ◆ 焦点 : Cassegrain, Nasmyth 2
- ◆ 視野 : 25'φ

運用形態

◆他大学、機関と協力した運営、利用

- 観測装置の共同開発
- 共同利用観測

共同利用観測の公募

すばる望遠鏡と共同のTACも検討中

2. 観測装置計画

◆2観測装置

- ・近赤外線撮像分光カメラ
- 中間赤外線撮像分光カメラ

◆予算措置

- 平成21年度補正予算
- 2年で製作?!

3. TAO-NIRCAM

- ◆ 装置のコンセプト
 - :望遠鏡・サイトの特徴を生かす
 - 広い視野
 - 望遠鏡視野はφ25'
 - 豊富な観測時間
 - モニタ、大規模サーベイなどが可能に
 - 広い大気の窓
 - 0.9-2.5µmまで、ほぼ連続した大気の窓
 - 分光に有利

3. TAO-NIRCAM

◆装置の特徴

4k x 4k 検出器で9.6'φの視野をカバー
2波長帯同時撮像
0.9-2.5μmの中分散同時分光
多天体分光

◆オプション

AOSMによるGround Layer AO

光学系

2バンド同時

◆ 実効視野は8.5'角で4隅が蹴られる

オブトクラフ

分光時

撮像時

短波長側のスポットダイアグラム

↑**矩形は** 100µm

長波長側のスポットダイアグラム

短波長側のスポットダイアグラム

WAVELENGTH-> FIELD	0 900000	1,000000	l,100000	1,200000	1.300000	1,400000	1,500000
0.0000, 0.0000 DEG	188.68	٢	٢	۲	۲	•	۹
0.0000, 0.0550 DEG	0	0	÷	\$ \$	٢	Ó	۲
0.0000, -0.0550 DEG	٢	٢	¢	¢		0	0
0.0550, 0.0550 DEC	0	o					
0.0550, -0.0550 DEG		e	() () () () () () () () () () () () () (•	0	0
SURFACE: IMA							

長波長側のスポットダイアグラム

WAVELENGTH->	1,600000	1,750000	1,900000	2,050000	2,200000	2.350000	2,500000
0.0000, 0.0000 DEG	100.30	۲	۲	۲	۲	۲	۲
୭.0000, ୭.0550 DEG	0	0	0	, contraction of the second se	٢	۲	٢
0,0000, -0.0550 DEG	Ø	۲	۲	ê	÷	0	0
0.0550, 0.0550 DEG	0	0	0				J.
0.0550, -0.0550 DEG			 	an <mark>os</mark>	Constant and the second	0	0
SURFACE: IMA							

◆ HAWAII-2RG + SIDECAR ASICが有力

- Teledyne 製
- 2k x 2k ⇒ 8個必要…
- HAWAII-4RG は間に合わない(2010/中に試験デバイス が出てくる)
- ◆ VIRGO 2kが対抗馬
 - Raytheon製
 - ASICがないので、読み出しボードシステムも8個いる
 - ・分光用途での実績がない

フィルター

- Mauna Kea Standard Filter Set
 - Y, J, H, Ks, K
 - Narrow-band Filters?
 - Medium-band Filters?
 - Tunable Filterはいるか?

分光性能

- ◆ 0.9-2.5µmを一気にカバーできる
- ◆ R~1500 (0.5"幅スリット)
- ◆ 多天体分光: Max 35 (スリット長15")
- ◆ 広い波長coverageが得られる

- ・ 必要な波長分解能は?
- multiplicityは?

スケジュール

2010/前:冷却系、機械系、光学系設計確定
2010/末:検出器納品
2011/初:冷却系、機械系、光学系製造完了
2012後:組み上げ調整

望遠鏡本体の完成スケジュールは、 最速でも2016年

スケジュール

2010/前:冷却系、機械系、光学系設計確定
2010/末:検出器納品
2011/初:冷却系、機械系、光学系製造完了
2012後:組み上げ調整
2013初:すばる望遠鏡への輸送
2013後:すばる望遠鏡でのファーストライト

すばるでの性能

・視野は6.5'角(7.3'φ) ・視野端での結像性能は低下する ・カセグレン焦点設置

短波長側のスポットダイアグラム

TAOサイトについて

小西真広、ほかTAOチーム(東大)

TAO計画 The University of Tokyo Atacama Observatory Project

 南米チリ・アタカマ高地 (ALMA, ASTE, NANTEN2,,,) チャナントール山(標高5,640m)
 口径6.5mの光学赤外線望遠鏡

Visibility

高い大気透過率

標高5,640m 水蒸気が少ない ↓ 赤外線の吸収が小さく、 z~Kバンドにかけて連 続的な大気の窓になる。 ウナケアに匹敵するシーイング

今年6月の観測でも、可視・近 赤外とも星像(FWHM)~0.6″ のシーイングを達成。

MIVERSITY OF TON

表 5: 他の観測所の DIMM によるシーイング測定結果との比較

Motohara et al. 08, SPIE

TAO6.5mに先立ち 1m望遠鏡 miniTAO

• ANIR : Atacama Near-InfraRed camera

• 仕様

検出器	HAWAII2-Engineering
ピクセルフォーマット	1024 x 1024
ピクセルスケール	0.318"/pix
視野	5.41′ x 5.41′
フィルター	Y, J, H, K, Pa α , Pa α -off, Pa β etc
可視同時撮像	ダイクロイックミラーによる

• 2009.06.08 First Light

ANIR Pa α Imaging

• $Pa\alpha$ (1.8751µm) Imaging of Galactic Objects

ANIR Pa α Imaging

• Nearby IR-luminous Galaxies.

J, H, Ks

Hidden Ionized Gas in Interacting Galaxies : IC 4686/4687/4689

J, H, Ks+Paschen- α

ANIR / miniTAO 1.0m Telescope

Paschen-a

- ANIR星像(FWHM) ~ 0.56"を達成。
 →良好なサイトであることを確認
- Paa 観測 ~0.5" システム効率が2倍ほどふらつく。 水蒸気量の変動 0.5 Atacama 1m Telescope •• Without Dichroic Mirro 0.4 · With Dichroic Mirror 0.3 system 0.2 0.1 0.5 1.5 2 TAO-NIRCAM Wo

望遠鏡性能

回折限界

 $\lambda(\mu m)$

~0.4"

今後のminiTAO

- 2009 秋
 ANIR第2期観測
 中間赤外線カメラ First Light
 観測の遠隔化
- 2010
 本格観測
 (銀河中心サーベイ、近傍LIRGサーベイ)
 +
 TAO-NIRCAM製作

山頂へのアクセス

最寄の町~山頂まで2時間半(80km)のドライブ

山頂へのアクセス

山頂へのアクセス

最寄の町〜山頂まで2時間半(80km)のドライブ

山頂へのアクセス

最寄の町〜山頂まで2時間半(8

山頂へのアクセス

最寄の町〜山頂まで2時間半(80km)のドライブ

TAO-NIRCAM Workshop, Sep 11 2009

山頂へのアクセス

・ 最寄の町~山頂まで2時間半(80km)のドライブ

TAO-NIRCAM Workshop, Sep 11 2009

TAO近赤外観測装置による太陽系天体の観測

長谷川直、黒田大介、大坪貴文

TAO<u>望遠鏡本体</u>に関する 太陽系チームからのリクエスト

- •移動天体追尾を可能にして欲しい。
 - 移動天体追尾が出来ませんとこの後の話は すべてできなくなってしまいます・・・
 - 移動量は最大で45arcsec/seconds。これを満 足すれば、大概の太陽系天体が観測できま す。

Meteorite Classification

小惑星の分光観測

- C-type asteroids
 - Carbonaceous chondrites
- S-type asteroids
 - Ordinary chondrites
 - Stony-iron meteorites
- X-type asteroids
 - Iron meteorites
- D-type asteroids
 - Tagish lake meteorites

小惑星の分光観測

- 小惑星の分類は基本は可視のスペクト ルから行われてきた。
- 但し、近赤外(0.9-2.5µm)のスペクト ルがあるとより詳細な事がわかる。

小惑星の分光観測

近赤外(0.9-2.5µm)のスペクトルがあるとより詳細な事がわかる。
 - 1µm&2µmの吸収の深さと形状が分かる。

氷天体

 水氷(アモルファス・結晶)・アンモ ニア・メタン等の判別が可能

(Sunshine et al. 2006)

TAO時代の面白そうな 小天体観測

- IRTFで出来ないサイズレンジでの近地球 小惑星観測
- 自転周期の速い(~2時間)小惑星の観測
- ・ 氷天体の観測
- ・はやぶさ2の観測
 - オプションだが、衝突機が小惑星に衝突させる計 画がある。

小惑星のLバンド分光

TAO近赤外装置に関する 太陽系チームからのリクエスト

- 分光のスリットに幅広のスリットを用意して欲しい (シーイングサイズの5,6倍程度)。
 - 1オクターブの波長範囲を%の傾きの議論をする為に必要。 イメージとしては測光分光。
- Lバンド分光も出来るようにして欲しい

 透過率を見ると、Lバンドについても大変素性が良い。T AOのサイトを生かせる観測になるのではと考える。

TAO 6.5m 近赤外線観測装置ワークショップ

星形成領域におけるYSO食連星サーベイ

国立天文台・ELTプロジェクト室 山下卓也

概要

- 広写野赤外線観測装置を用いた星形成観測
 - 良く行われる観測
 - 問題点
- 食連星観測による星の物理パラメータの決定
 - ライトカーブ+視線速度 → 主星・伴星の質量・半径(温度、光度)
- ・ 食連星サーベイの現状
 - Monitor プロジェクト
- YSO食連星サーベイの提案
 - TAO 6.5m のメリット
 - 近赤外線•連続性
 - 円盤システム(同士)の食の発見?!

広写野赤外線装置を用いた星形成研究

- すばる MOIRCS で良く行われる星形成関連の観測
 - 超低質量YSOの統計的研究
 - ・星形成領域の深いYSOサーベイ・多天体分光
 - ・より軽い星(褐色矮星・惑星質量)の存在・形成・進化
 - IMF の軽い側の関数形
- しかし、どうしても残る疑問点!
 進化モデルは正しいのか?
- この問題の解決の数少ない方法の一つ
 - → 食連星による星パラメーターの決定
 - YSO の食連星はまだあまり進んでいない

星の物理量の決定

- 天体質量の決定
 - 軌道(運動)を決定 → ニュートン力学で質量決定
 - (可視赤外線天文では主に)連星系を用いる
 - 電波では、星周ガスの運動を用いる
- 連星系
 - 実視連星の質量
 - ・ 位置を精度良く測定して軌道を決定
 2天体の相対位置変化だけだと、質量の和しかわからない
 - ・連星系の軌道周期:P
 - 連星系の軌道長半径:a = a₁ + a₂

$$-\frac{a^3}{P^2} = \frac{G(M_1 + M_2)}{4\pi^2}$$

- » 連星系の見かけの軌道長半径:α
- » 距離 (d) がわかっていると: a = α × d

星の物理量の決定

- 分光連星の質量
 - DLEB: Double lined (SB2) eclipsing binary

– M₁ sin³ i, M₂ sin³ iが求まる

- SLEB: Single lined (SB1) eclipsing binary
 - 質量関数((M₂ sin³ i)³ / (M₁+M₂)²)しか求まらない
- SB2 で(相対位置)実視連星でもあると、主星・伴星の質量が求まる
- 食が観測されると、iが求まり、かつ・・
 - Eclipsing Binary(食連星)
- Eclipsing Binary(食連星)
 - 測光観測で"食"を起こす天体を見つけ、光度変化を観測
 - 視線速度の観測を合わせて主星・伴星の質量決定
 - モデルを介するが、主星・伴星の半径も求まる

- 表面温度、光度、表面重力も求まる(多色データ)

食連星(Eclipsing Binary)観測の現状

- ・ 観測の現状
 - 1Mo 以上の主系列星は多く観測されている
 - < 1Mo, YSO の観測は非常に少ない
 - 実行中の食連星サーベイプロジェクト
 - Monitor
 - 散開星団トランジットサーベイの副産物
 - UStAPS
 - The University of St Andrews Planet Search
 - EXPLORE-OC
 - EXtrasolar PLanet Occultation REsearch Open Cluster
 - PISCES
 - Planets in Stellar Clusters Extensive Search
 - STEPSS
 - Survey for Transiting Extrasolar Planets in Stellar Systems

Monitor プロジェクト

- 9つの若い散開星団の測光モニター
 - 超低質量星・BDの掩蔽,惑星トランジットを見つける
 - ・若い星の、年齢・質量・半径・光度の関連を較正
 - K型星から惑星まで
 - 副産物: 自転とフレア
 - 2004年開始、世界中の 2-4 m 望遠鏡を利用
 - 100以上のEB+約3のトランジット惑星を見つけると期待
- ターゲット
 - t << 200 Myr、1回の撮像で数百天体が撮れること
 - Primary: ONC, NGC2362, NGC2547, NGC2516
 - Secondary: h & χ Per, IC4665, Blanco 1, M50, M34

Monitor プロジェクト

- 望遠鏡+装置
 - INT 2.5m: Wide Field Cam
 - ESO/MPI 2.2m: Wide Field Imager
 - CTIO 4m: Mosaic II
 - CFHT 3.6m: MegaCAM
 - KPNO 4m: Mosaic
- サーベイの深さ
 - 主系列の下限質量星に対して測光精度~1%
 I = 19 mag が分光RVフォローアップを行う限界
- サンプリング間隔
 - < 15 min : 1hr (最短)の掩蔽を見逃さない
 - できれば 5 min に近く: ingress, egress を分解する

Monitor プロジェクト

- オリオンのサンプル (Irwin J. et al. MN 380, 541 2007)
 - WFC on 2.5m INT, 34' × 34' 写野、10夜の観測を2+2セット
 - 積分時間:60s at V and 30s at i バンド → 3.5分頻度
 - 限界等級:1% 精度で、18mag at V and 17mag at i バンド
 - 2500天体のライトカーブ取得
 - EB イベント ~ 0.05mag v.s. 食以外 ~ 0.03mag PV
 - 黒点の自転による変動
 - フィッティング \rightarrow 4.9日の自転による modulation でOK
 - ・黒点の生成・消滅 → ライトカーブが粗だとうまくフィットできない

食連星サーベイの提案

- 可視光モニター観測ではできない(不得意な)天体を狙う
- TAO 6.5m の利点
 - 近赤外線観測
 - 若いEBを多数発見できる
 - 同年齢仮定が成り立っていない?
 - 多くのサンプルが必要
 - より若い天体をサーベイできる
 - 進化トラックのより若い時期の天体データを提供できる
 - 円盤システム(同士)の食が発見できるかも!
 - 連続的に観測できる
 - ・ 黒点(など)による別原因の変光の補正が容易

食連星サーベイの提案

- 対象とする天体(主星、伴星)
 - 若い星状天体(YSO)
 - 低質量星YSO
 - 若い褐色矮星
 - ・あわよくば、惑星質量天体
 - Orion:1Myr の進化モデル(右図)
 - AV=10mag:BDの主星が十分に検 出できる
 - AV~0 mag:主星が惑星質量天体
- 対象とする現象
 - 食による減光
 - Eclipsing Binary
 - 惑星トランジット
 - 周期:10日程度までを狙う?
 - ・ 使える時間に依存:長いほどよい

Lucas+05 MN361, 211 Orion 周辺部: 26², 396天体

- 観測計画
 - 期間
 - 観測頻度
 - 5分毎(ingress, egress を分解)
 - 積分時間
 - 1分を仮定
 - 感度(すばるMIRCSから換算)
 - 1分積分, 100σ
 - 17.8 mag at J
 - 16.7 mag at H
 - 16.8 mag at Ks
 - 面積
 - 8' × 4' × 4 写野程度

食連星サーベイの提案

- 観測計画
 - 対象領域
 - 年齢 < 10Myr の星形成領域(散開星団は含めない)
 - ONC(-5°) ~ ∼1Myr, 480pc
 - NGC2362(-25°) ~5Myr
 - その他南天の近傍星形成領域

» 未調査です

– IC348 (+32°) ∼3Myr

- 発見確率(定量的計算はしていません)
 - 写野:8' ×4' ×4写野
 - WFC on 2.5m INT, 34' × 34' の1/9
 - 中心部を狙うので星の数密度は高い
 - Monitor はOrion 周辺部
 - Monitor の期待値: >100 の食連星(オリオンだけではない)

食連星サーベイの提案:フォローアップ観測

- フォローアップの高分散分光 (RV)
 - Monitor では I < 19 mag を設定(8-10m 可視高分散分光)
 - 例えば、すばる IRCS を用いると
 - 1hr, 5σ
 - AO がフルに効いていると仮定
 - J,H,K ~18mag
 - ・ 発見される多くの食連星は赤外RV観測可能
 - TMT に拡張
 - + 2.8 mag \rightarrow 21 mag
- 原始星は吸収線の視線速度測定は難しい?
 - 非常に若い原始星は円盤表面からの吸収線がある?
 - 円盤からの輝線がみられる場合もある(分離が困難?)

食連星サーベイの提案

- しかし、円盤システム(同士?)の食が見られるかも!
 - 原始星・円盤の幾何構造の新しい情報が得られる
 - 但し、ある程度離れたシステムでないといけない??
 - 円盤のサイズ?
 - 軌道周期の長いシステム → 長時間モニター
- 散乱光しか見えていない天体の場合は、Pole-on から見るのに 等しい?!
 - 角運動量が揃っていると食を起こす幾何学的配置はない?
 - ひょっとしたら妙なシステムがあるかも

観測装置へのリクエスト

- 高いダイナミックレンジ
 - ある程度明るい星も対象にできると良い
 - しかし、明るい星は数も少ないし・・・
- 短い読み出し時間
 - 高い観測効率
 - ダイナミックレンジ確保のためには短時間積分の足し算?
 - 10秒程度であれば・・

ミラ型変光星を用いた 楕円銀河の高精度距離測定

松永典之 (東大天文センター)

はじめに

● IRSF/SIRIUSの経験から:

- 安定して常時使うことのできる赤外線
 装置は大変有効である。
- 豊富な観測時間を活かして、世界でも
 稀少な近世外線での変光星観測を行いたい。

楕円銀河

◎ 宇宙初期の銀河形成・進化を物語る重要な化石

- 古い星が支配的
- •銀河団の中心部分に向かって多い。
- 楕円銀河の正確な距離決定によって・・・
 渦巻銀河とは異なる銀河団内での分布

(Cf. おとめ座銀河団)
 光度など基本的な物理量

距離のはしご

● 三角視差法では届かないが、個々の星が見えるという範囲では、セファイドの周期光度関係が基本的な役割を果たす。

変光星の年齢

- ◎ 古典的セファイド
 - 若いグループ (ディスクなど)。3~10太陽質量。
- 動
 型
 セファイド・RRライリ
 - 年老いたグループ(球状星団など)。約1太陽質量。
- ミラ型変光星は1~5太陽質量程度

1 Gyr以上の年齢の星 しかいない銀河:

× 古典的セファ1 型セファイド RRライリ ミラ型変光星

楕円銀河の距離決定法

◎ 古典的セファイドがいないので、高年齢の種族に使える距離指標が必要。

距離指標	精度	到達できる距離
RRライリのP-L関係		×
型セファイドのP-L関係		×
ミラ型変光星のP-L関係		
赤色巨星分枝先端法(TRGB法)		
惑星状星雲光度関数法		
面輝度ゆらぎ法		
フェイバー・ジャクソン関係	×	

ミラ型変光星による距離決定

- 周期光度関係の利用
 - ひとつひとつのミラに対する距離決定精度は ± 0.2 mag ほど。何十個かまとめて使うこと で統計誤差が小さくできる。
 - 系統誤差
 - ◦LMCの距離の不定性

○ 金属量への依存性がよくわかっていない。

銀河中心の距離決定 µ₀=14.58±0.02^{stat}±0.11^{syst} (Matsunaga et al. 2009)

近赤外線観測の有利な点

- ミラの周期光度関係は近赤外でないとダメ。
- ◎ ミラが目立つので混んだ領域でも検出・測光しやすい。
 - 楕円銀河では重要な利点
 - それでもやはりAOは欲しい。

TRGB法(赤色巨星分枝先端法)

- ヘリウムフラッシュの光度が、金属量にそれほどよらずほぼ一定であることを利用
 - 比較的精度が高いが、ほとんどの場合tipの等級を求めるのに±0.10等ほどの誤差が出る。
 - S. Sakai氏(UCLA)らが精密な方法論を確立している。

Valenti et al. (2004)

どれくらいの精度が出るか

● 100個のミラが見つかれば

→ ± 0.02 (stat.) ± 0.10 (syst.) mag Δ [Fe/H] = 0.3 dex に対し、 $\Delta\mu_0 \sim 0.05$ mag (ただし、まだあまり確立されていない。) • TRGB法

→ ± 0.10 (stat.) ± 0.10 (syst.) mag Δ [Fe/H] = 0.3 dex に対し、 $\Delta \mu_0 \sim 0.2 \text{ mag}$ (Kバンドの場合)

● 10Mpcにおけるの∆µ₀の影響

Δµ ₀ (mag)	0.02	0.05	0.10	0.15	0.20	0.30	0.50		
ΔD (kpc)	90	230	460	690	920	1400	2300		

*MWとM31の距離:700 kpc

Cen Aの場合

• Cen A (NGC 5128)

- S0銀河
- 電波銀河で最も近いAGNがある。
- Rejkuba (ESO)らがミラ型変光星の観測を行った。

(MPG/ESO 2.2-m + WFI)

DEuronean Southern Observar SO PR Photo 14a/03 (10 June 2008 DM (mag) Method Reference Stellar luminosity function (LF) 26.6 Sersic (1958) 2 29.6 Largest HII regions Sandage & Tammann (1974) 27.73 ± 0.14 Planetary nebula LF Hui et al. (1993) 3 (3) revised by Harris et al. (1999) 4 27.97 ± 0.14 Planetary nebula LF 27.53 ± 0.5 Globular cluster LF Harris et al. (1988) 5 I-band RGB tip (WF chips of WFPC2) 27.86 ± 0.16 Soria et al. (1996) I-band RGB tip (PC chip of WFPC2) 27.76 ± 0.16 Soria et al. (1996) Harris et al. (1999) I-band RGB tip (WFPC2) 8 27.98 ± 0.15 I-band SBF Tonry & Schechter (1990) 27.48 ± 0.06 0 I-band SBF (9) revised by Israel (1998) 27.71 ± 0.10 10 11 28.18 ± 0.07 I-band SBF (9) revised by Marleau et al. (2000) 28.12 ± 0.15 I-band SBF Tonry et al. (2001) 12

Rejkuba (2002-2004)の観測

VLT-8.2m / ISAAC

- 1999~2002にかけて約20回
- 0.148"/pix (1k1k Hawaii Rockwell array)
- FWHM ~ 0.4"
- Exposure ~ 60 min

Rejkubaによるミラの発見

- 1000個以上の長周期変光星を発見
- ◎ 局部銀河群の外にある銀河で初めて(現在のところ唯一)
- 周期光度関係を利用して距離測定
 - μ₀(Cen A) = 27.96 ± 0.11 mag (系統誤差込み)
 - 同時に求めたTRGB法の結果では27.87±0.16 mag

さらにミラ型変光星の応用

- ◎ 周期分布がどういう年齢の星がいるかという指標になる。
 - 周期が長いほど若い星(100Myr程度まで)の 存在を示す。

楕円銀河変光星探査の観測目的

● 距離と銀河にある恒星の年齢構成の調査

- ミラ型変光星のP-L関係を利用した距離決定
- ミラ型変光星の周期分布は、主に100Myr~10Gyrの 年齢構成を調べる指標となる。
- 同時に

*「
 • 赤色超巨星*(< 100Myr の若い種族)の探査

 • TRGB法などによる距離決定

● 銀河群・銀河団内における分布
 ● 銀河の基本的な物理量(質量光度比など)の測定

TAO/NIRCAMによる観測

● 1時間のon-source積分→K=22 mag (5σ)

 どんな距離にあるどんな変光星が観測で きるか

Vバンドでの変光星探査に必要な等級

- HSTでは27等くらいまでの撮像を行い、20Mpcくらいの 銀河にあるセファイドを観測。
- ミラはVバンドでは暗く、さらにP-L関係を持たない。

Kバンドでの変光星探査に必要な等級

- ミラ型変光星が明るくなり、赤外の方が探査に有利。
- セファイドが探査可能な範囲は、HST→JWSTでそれほど伸びないが、ミラ型変光星では非常に遠くまで見える。

- 10Mpc以内にある近傍楕円銀河およびレンズ状 銀河
 - 不完全なサーベイだが・・・あまり多くない

名称	別名	形態	RA	DE	およその 距離	補足
ESO 294-010		dG	00:27	-41:51	1.9 Mpc	Scl. Group
ESO 410-005		dG	00:16	-32:11	2 Mpc	Scl. Group
NGC 404		dE/S0	01:09	+35:43	3.2 Mpc	LINER-AGN
NGC 3379	M 105	E	10:48	+12:34	8.1 Mpc	LINER-AGN
NGC 5102		S0	13:22	-36:38	3.2 Mpc	Cen A Group
NGC 5182	Cen A	S0	13:25	-43:01	3.8 Mpc	Cen A Group
NGC 5206		S0	13:34	-48:09	4.6 Mpc	Cen A Group

必要な観測時間

- 1回あたり1時間の積分を繰り返す。
- ●最初の数回でミラの検出が可能かどう か調べる。
 - 不可能な場合はSBF法等でおよその距離 (±0.2 mag)を決める。
- ミラが検出できそうなら、3年間かけて 25回くらい反復観測。
- Overhead(積分時間の2倍)を入れて、
 1天体あたり50時間(~7夜分)

まとめ

- 古典的セファイドが存在しない楕円銀河 等について、ミラ型変光星を利用した高 精度(±0.1 mag)の距離測定を行う。
- TAO/NIRCAMで、10Mpcくらいまでの 銀河のミラを観測できる。
- ◎ 銀河群・銀河団の構造や、銀河の基本的 な物理量(光度など)を精度よく求める。

銀河考古学 I 銀河系

N.Arimoto NAOJ (Japan)

近赤外多体分光装置

いて座矮小銀河

TAOの場合

CENTER OF MILKY WAY

DISKS OF MILKY WAY

AREAS OF INITIAL OBSERVATIONS

SAGITTARIUS DWARF GALAXY

0

銀河系のストリーム構造

ストリーム近傍の球状星団

Bootes I (UFdG)

Bootes Iの空間構造

S.Okamoto (2009)

Canes Venatici I (UFdG)

Canes Venatici I

w/ Isochrone (Z=0.001, Age=10Gyr)

Canes Venatici Iの空間構造

S.Okamoto (2009)

Ursa Major (Suprime-Cam)

Search for New UFdGs

SDSS Candidates

<u> さんがモデルとのひかく</u> ストリームの視線速度・距離

ストリーム星の金属量

Call Triplet as Metallicity Indicator 近赤外での金属吸収線

近赤外吸収線

Gemini-S/Phoenix (R=50000)

- 近赤外には原子やイオンの吸収線があまりない。
- あっても高電離の金属の吸収線で複雑で解釈も難しい。
- 多くの吸収線は正しく同定されておらず、吸収線の強度も不明である。
- その代わりに分子の吸収線があるが、TiOやZrOの吸収線はない。
- 分光器の性能は可視光域に比べて劣っている。
- 近赤外データだけから星のパラメータを決定するのは困難である。

Population III stars in Galactic Bulge

Specific Goals of HR Survey

• Formation histories of galaxies: stellar population study in terms of colour-magnitude diagrams (CMDs) and abundance patterns can reveal how bulge, disc and dSph's formed and evolved.

Targeted Regions

bulges, disc, outer disc, halo, large area dSphs disrupted globular clusters M31/M33 large area (substructure in haloes) Galactic streams dwarf irregulars

Zoccali et al. (2003) A&A 399, 931

銀河考古学 II 局所銀河群

2009/9/11 TAO近赤外観測装置のサイエンス 遠方銀河 (z>4)の観測

東大·天文教室 嶋作一大

1. 宇宙再電離時代の銀河探査
 2. 原始銀河団の観測
 3. 独自性を出すには? HSC 深探査領域を観測しよう

1. 宇宙再電離時代の銀河探査

宇宙再電離の謎

宇宙再電離は 6<z<15 の間に起きた 3-10億歳

- 再電離の謎
 - -いつ?
 - どのように? (ionizing bubbles)
 - 電離源は?
 - 銀河や AGN の性質
 - first stars の性質

z<7.5 は Hyper Suprime-Cam で研究 z>10 は JWST や TMT に任せる TAO は 7<z<10 をやる

2つの銀河種族

- 遠方宇宙の主要な銀河種族

(どちらの種族も z>6 で数が減る ⇒ 銀河の形成期?)

- 電離源の候補として、あるいは、再電離過程のプローブとしても重要

TAO で z>7 の両種族を探査

Lyman a 銀河の探査

夜光のスペクトル

Gemini web

モデルが予想するLyman α 銀河の天球分布

Orsi et al. 2008, MNRAS, 391, 1589

遠方に行くほど - 明るいものが減る (1E+42erg/s 程度) - clustering が強くなる (100Mpcスケール)

z~9の Lyman α 銀河の数密度

発見するには L(Ly α) < 3E+42 erg/s ⇔ 3E-17 erg/s/cm² volume > 1E+5 Mpc³ ⇔ 0.2平方度 が必要

Dropout 銀河の探査

Bouwens et al. 2008

TAO による z>7 の銀河の探査

- 最低 30hr (バンド当たり) - 最低 0.2平方度

AB,5 σ	3hr	30hr
J	26.1	27.2
Н	25.3	26.4
K	25.8	26.9
NB118	24.5?	25.5?

視野 8分*φ* = 50平方分 視野 11分*φ* = 95平方分

夜数 = 視野数 × 視野当たりの積分時間 × バンド数 / 8hr 150 10 30 4

しかし、同等以上のデータが 2016 年までに他所で得られるだろう (特に広帯域バンド): VISTA, HST, JWST

VISTA 望遠鏡(ESO)

Visible and Infrared Survey Telescope for Astronomy

口径 4.1m Paranal (2635m) 2010年から観測開始?

16 枚の検出器 = 0.6平方度 0.34arcsec/pix PSF = 0.51arcsec (telescope+camera) Z,Y,J,H,Ks,NB118 75%は大規模パブリックサーベイ (236夜/年)

- サーベイスピードは圧倒的
- TAO は、口径、標高、PSF、AO で上回るが…

Ultra-VISTA Dunlop et al. 6 つのパブリックサーベイの 1 つ

サイエンス

- dropout 銀河 (個数は LF(z=6) が無進化の場合)
 - z=6.3 (i-drop, 560個), z=7.5 (z, 450), z=8.5 (Y, 180), z=10 (J, 6)
- Lyman a 銀河
 - z=8.8 (NB118=3.7E-18 erg/s/cm2, 15-30個)
- mass-selected galaxies at z=1.5-5
- QSOs at z>3

2. 原始銀河団の観測

原始銀河団の重要性

原始銀河団(や原始大規模構造)では、 どんな銀河がどう分布しているのか? できるだけ過去で調べたい

見つかっている原始銀河団

- どれも数分から 10 分の大きさ ⇒ TAO NIR Camera にぴったり - NIR の観測はきわめて乏しい(暗いから)

何をどうやって調べるか

(0) z>4 の原始銀河団の探査

- Hyper Suprime-Cam "Deep Survey"
- 電波銀河、QSO、サブミリ銀河を目印にする

- 原始大規模構造

約10平方度 ⇒ 1E+8 Mpc³ ⇒ 10² 原始銀河団 分光同定は可視で行なう

(1) TAO で撮像観測

分光銀河の静止系可視の SED ⇒ 銀河の星種族
 分光銀河の形態
 old/dusty な銀河の探査

(2) TAO で分光観測
 [OII] から星形成率を推定
 4000A break をトレース

可視で見つけて、TAO で物理を調べる

3. 独自性を出すには? Hyper Suprime-Cam 深探査領域を観測しよう

TAO の強み

装置の強み

- 広い視野
- 2波長同時観測 柔軟な運用
- 大口径
- 広い大気の窓
- 視野全体の AO

運用の強み

- -時間の集中投資

しかし 10 年後は心もとない (VISTA, HST, JWST などが活躍) 観測モード、天域、運用にエ夫が必要

大望遠鏡の赤外カメラ

UKIRT/WFCAM CFHT/WIRCam VLT/Hawk-I Keck/MOSFIRE Subaru/MOIRCS HST/WFC3 JWST/IRMS TMT/NIRCAM

運用によって 深さ(右方向) 広さ(上方向) で勝負

独自のターゲットで勝負

分光器にもライバル Keck/MOSFIRE JWST/NIRSPEC

TAO で何をする?

広帯域バンドの深探査(~1平方度) VISTA, HST, JWST などで行われてしまう

大規模分光探査 Keck/MOSFIRE (6'×6')などで行われてしまう

狭帯域探査に特化する? 広帯域データのある天域を狙う(後発組の権利)

Hyper Suprime-Cam の深探査領域を観測する 可視の最強の撮像データ 共同提案者:大内(Carnegie)

HSC の 2 つの深探査(案)

Ultra Deep Survey 3 平方度 30 hr/band/pointing u,g,r,i,z,y (27-28mag), NB数枚 (26-27mag) 2天域 (UKIDSS/UDS, Ultra-VISTA?)

Deep Survey 40 平方度 3 hr/band/pointing u,g,r,i,z (26-27mag), NB数枚 (25-26mag) 5天域

- きわめて深く広い可視の撮像 (BB, NB) - z<7.5 の銀河を多数検出

TAOによる観測

- z~7 銀河の分光同定(z=7 LAE 10²個、z-drop 10³個)
- z=6.5 LAEsのLya、Hell、CIV輝線の分光
- 狭帯域バンドの z>7 Lyman α 銀河の探査
- z~4 以上の原始銀河団の観測(撮像、分光)
- z<4 の銀河のさまざまな分光・撮像観測

あればうれしい

GLAO 波長分解能 R~2000 以上 (J band 付近) tunable NB filters 3 つの検出器のうち 1 つを可視 CCD にする

TAO近赤外線による 遠方銀河の探査

Outline

1. 近赤外・遠方銀河探査の現状 2. TAOで目指す遠方銀河探査 3. TAO遠方銀河探査でできるサイエンス

Outline

1. 近赤外・遠方銀河探査の現状 2. TAOで目指す遠方銀河探査 3. TAO遠方銀河探査でできるサイエンス

遠方銀河は主に2種類、近赤外ではz~7-14 Lyman Break Galaxy (LBG; UVで明るい) (LAE; UVで暗い)

Lya 1216Aにより検出

lye+06

z~7-14銀河探査の目的

 First galaxyの発見
 Lya輝線光度関数 宇宙の中性度(再電離度)、銀河進化
 UV continum 光度関数 銀河進化、銀河の再電離への貢献度
 恒星種族(SED-fitting)

恒星質量、年齢、ダスト赤化、星形成率
 Labbe+06
 恒星質量密度 → 質量集積史、CDMモデルへの制限
 星形成率密度 → 星形成史、銀河の再電離への貢献度
 先ずは、z~7-14銀河の検出から

近赤外・遠方銀河探査の現状 狭く深く vs. 広く程よく深く

近赤外・遠方銀河探査の現状:<mark>狭く深く</mark>LBG編 Hubble: ACS i,z NICMOS J, H \sim 27–28 (AB5 σ) Great Observatories Orignins Deep Survey (GOODS) Hubble Ultra Deep Field (UDF) z~6-10 ライマンブレイク銀河(LBGs) •z~5.5-6.7: i-dropout: i'-z'>1.3 数百天体 •z~7-8 : z-dropout: z'-J>1.3 8天体 •z~9-10 : J-dropout: J-H>1.8 0天体 Bouwens + 06 <u>:H-dropout</u> 先例なし •z~1 Bouwens + 08

Hubble Ultra Deep Fieldで検出されたz=7-10銀河候補

Bouwens & Illingworth (2006)

近赤外・遠方銀河探査の現状:狭く深くLBG編 Hubble: ACS z NICMOS J, H ~26-27 (AB5 σ) 重カレンズ銀河団6個9arcmin² → J, H ~27-30 (AB5 σ) レンズされた <u>z~7-8</u> LBGs 10個 _{90%がlow-z}などの可能性あり レンズされた <u>z~9-10</u> LBGs 2個

 $1 \overset{1}{\otimes} \times \\ 2 \overset{5}{\otimes} \overset{5}{\times} \times \\ 19 \overset{1}{\otimes} \times \\ 14 \overset{1}{\otimes} \times \\ 16 \times \\ 15 \times \\ 13 \overset{1}{\otimes} \end{array}$

Richard et al. (2006) Richard et al. (2008)

近赤外・遠方銀河探査の現状:狭く深くLBG編 Hubble: ACS z NICMOS J, H ~26-27 (AB5 σ) 重カレンズ銀河団11個20arcmin² → J, H ~27-30 (AB5 σ) レンズされた z~7-8 LBGs 1個 (less robust 3個) レンズされた z~9-10 LBGs 0個 (less robust 1個)

A2390-JD

近赤外・遠方銀河探査の現状:広く程よく深く編 4m望遠鏡近赤外Narrowbandサーベイ NB ~1.06 µ m <u>z=7.7</u> ライマンα輝線銀河(LAE) ①CFHT WIRCam CFHT-LS領域 390arcmin² 7個 >8.3x10⁻¹⁸ erg s⁻¹ cm⁻² ②KPNO NEWFIRM ?領域 28'x28' ?個 >5.5x10⁻¹⁸ erg s⁻¹ cm⁻²

	LAE#1	LAE#2	LAE#3	LAE#4	LAE#5	LAE#6	LAE#7	Ribon et al. (2009) Rhoads
u*								
g'							1000	
r'	2 ¹ -			-	2			Full sample
i'	-1			-1	-	•		
z'	<u>_</u> *			-				
g'r'i'		.		-1	. ¹ -			
NB1060 combined	-							
J		100716 (1997)					122745 12275	
н	-						認識	
Ks			383	200			19	5×10 ⁴² 10 ⁴³ L(Lyα) (erg s ⁻¹)

Hibon et al. (2009) Rhoads et al. (2009)

z=6.5

近赤外・遠方銀河探査の現状:広く程よく深く 4m望遠鏡近赤外Publicサーベイ **COSMOS/Ultra-VISTA**

UKIDSS/UDS

Subaru/XMM-Newton Deep Fig: Dalton et al. Survey Field(SXDS) ULTRA-VISTA HDF-S degrees UDF Spitzer GOODS 1.5 degrees UKIDSS-UDS

0.8 deg2 5 year data DR5: 210 hrs up to 2007 depths $(5\sigma AB; 2")$ J = 24.0 H = 23.7 K = 23.9 0.75 deg2 ultra-deep + 0.75 deg2 deep. 5 year from 2009 冬~ 1000 hrs. depth(5σ, AB) Y=26.7, J=26.6, H=26.1, Ks=25.6, NB1.18=24.1 (z=8.8 LAE)

Outline

1. 近赤外・遠方銀河探査の現状 2. TAOで目指す遠方銀河探査 3. TAO遠方銀河探査でできるサイエンス

TAOで目指す遠方銀河探査 ●これまで分かっている事

■ 狭<深<(Hubble宇宙望遠鏡)

- GOODS/UDF: z~7-8 LBG候補が8個

- 重力レンズ銀河団11個: z~7-8 LBG候補が1個

問題点①: 視野が狭く、候補数少ない(z~9-10LBG候補0個)

問題点②: 暗くて分光できない(30m望遠鏡などを待たないといけない)

■ 広く程よく深く(4m地上望遠鏡)

- ・CFHT: z=7.7LAE候補が7個(NB ~25.2 AB 5σ)
- KPNO、UKIDSS-UDS、UltraVISTA:進行中、深さ YJHK~24-26.5 AB 5σ
 予測:明るいz~7-10LBG、LAE候補が数~十数個幾見つかる

利点:明るいので、分光同定できる可能性が高い 問題点:明るいものは稀なので検出個数が少ない可能性が高い。

限界まで深くできれば…。個数を増やせるかも → 4mよりも大きく、気象条件も良いTAO 6.5mなら更に深くできる! 広く深く=TAO 6.5m+視野・感度最大設計+大量時間投入

TAO近赤外カメラへの要求・観測に必要なパラメータ

●観測視野:少なくともUKIDSS、Ultra-VISTAと同じか広く <mark>
≧0.8deg²</mark>

8 arcmin² ϕ 視野: \geq 57 pointing

9.6 $\operatorname{arcmin}^2 \phi$ 視野: \geq 40 pointing

12 $\operatorname{arcmin}^2 \phi$ 視野: \geq 25 pointing

●観測深さ: UKIDSS、VISTAより深く
 ZYJ≧27.0、H≧26.5、K≧26.0
 NB≧25.5-26.0

 ●多バンド同時観測:3バンド同時が良い
 ●観測投入時間: ZYJHK~数十時間/バンド NB~数十時間/バンド

TAO Deep Field 構想 ●観測①(同時撮像): 1 deg², z=7.0、7.7、8.8、...18 Lya ナローバンド(NB) ~ 26mag AB 5σ ブロードバンドZ, J, H, K~26-27mag AB 5σ

●検出天体①: z=7-18 ライマンα輝線銀河

z=7.0、7.7、8.8、… 18 LAE、
 低赤方偏移のHα、OIII、Hβ、OII輝線銀河も検出可能

●検出天体②: z~7-14 ライマンブレイク銀河

- z~7-8 Z-drop (z-bandはSubaru Suprime-CamでもOK)
- z~8-9 Y-drop LBG
- z~9-10 J-drop LBG
- z~12-14 H-drop LBG (SPICAなどの中間赤外線と連携もあり)

●観測②フォローアップ多天体分光(将来30m望遠鏡で分光も可) ●目的:z=7-14 宇宙で以下を探査

- •銀河進化(光度関数、質量集積史、星形成史)
 - ・宇宙再電離(中性水素の変化、ionizing photon budget)
ZYJHKとz>7Ly α NBの3バンド同時撮像組み合わせ

Outline

1. 近赤外・遠方銀河探査の現状 2. TAOで目指す遠方銀河探査 3. TAO遠方銀河探査でできるサイエンス

クエーサーのGPトラフ吸収 z~6宇宙の中性度X_{HI}は1~4%

宇宙の再電離状況: 観測vs.モデル

z>7再電離探查

銀河の星/質量形成史

2 = 40

ナスミス焦点 1 近赤外綿装置

i'z'J Κ 3.6μ4.5μ

140で<u>z=7-14 LAE, z=7-14 LAE</u>

z=7-20銀河

主親

カセグレン集点

ナスミス焦点 2 可視分光装置

星形成率(Moyr-1)

1.視野は広い方が良い(12'φ) 2.同時撮像バンド数が多いほどよい(3バンド) 3.時間をたくさん投入して UKIDSS/UDS、Ultra-VISTAと以上の深さと広さ 広くて深いサーベイを目指す

2009/9/11 TAO NIR-CAM ワークショップ @ 三鷹

TAO近赤外観測装置による 遠方銀河団・銀河群の大規模探査

小山佑世 (東京大学・天文学教室)

Outline

- * なぜ銀河団観測か?
- * 現状の理解と問題点・次のステップ
- * TAOへの期待

現在の宇宙の銀河団は、すでに星形成活動を終えた 赤い楕円銀河やSO銀河(早期型銀河)に満ちている。

銀河の性質と環境の関係

形態-密度相関 (z=0) from SDSS galaxies (Goto et al. 2003)

z~1 銀河の星形成活動と環境の関係

星形成活動と環境の関係は z=0 の傾向とは逆の傾向を示す。 z=1→0 で高密度環境の星形成活動は劇的に変化した?

Panoramic Imaging and Spectroscopy of Cluster Evolution with Subaru (PI : T.Kodama)

~10 X-ray detected clusters at 0.4 < z < 1.45

Class	Cluster	\mathbf{RA}	Dec	z	L_X	Bands	Coordination
		(J2000)	(J2000)		10^{44}		
<i>z</i> ~0.4	CL 0024 + 1654	$00\ 26\ 35.7$	+17 09 43.1	0.39	3.2	BRz', NB	ACS, XMM, Chandra
	${ m CL}~0939{+}4713$	$09 \ 42 \ 56.2$	$+46\ 59\ 12$	0.41	9.2	<i>BVRI</i> ,NB	XMM
	(RX J2228+2037)	$22 \ 28 \ 36$	$+20 \ 37 \ 12$	0.42	16.5	BVRi'	Chandra, S-Z
z~0.55	MS 0451.6 - 0305	04 54 10.9	-02 58 07	0.54	12.0	BVRI	ACS (3.5'), Chandra, S-Z
	CL 0016+1609	$00\ 18\ 33.5$	$+16\ 26\ 13.4$	0.546	26.0^{\dagger}	BVRi'z'	ACS (3.5'), XMM, Chandra, S-Z
	(MS 2053.7-0449)	$20 \ 56 \ 21.8$	-04 37 51.4	0.583	5.0	BVRi'z'	ACS (3.5'), XMM, Chandra, S-Z
z~0.85	RX J1716.4+6708	17 16 49.6	$+67\ 08\ 30$	0.813	2.7^{\ddagger}	VRi'z',NB	Chandra, Astro-F target
	(MS 1054.4-0321)	$10 \ 56 \ 59.5$	$-03 \ 37 \ 28.4$	0.83	20.0	VRi'z'	ACS (6'), XMM, Chandra, S-Z
	RX J0152.7–1357	$01 \ 52 \ 42.0$	-13 57 52.9	0.831	16.0	VRi'z'	ACS (6'), XMM, Chandra, S-Z
	(RX J1226.9+3332)	$12 \ 26 \ 58.2$	$+33 \ 32 \ 49$	0.9	53.0	VRi'z'	XMM, Chandra, S-Z
	(CL 1604+43)	$16\ 04\ 28.3$	$+43 \ 16 \ 24.0$	0.9	2.0	VRi'z'	ACS (6'), XMM
z~1.2	RDCS J0910+5422	09 10 44.9	$+54 \ 22 \ 08.9$	1.11	2.1	VRi'z'	Chandra ACS(3.5')
	CL 1252-2927	$12 \ 52 \ 54.4$	$-29 \ 27 \ 17.0$	1.23	6.6	VRi'z'	ACS (6'), XMM, Chandra
	(RX J1053.7+5735)	$10 \ 53 \ 43.4$	$+57 \ 35 \ 21$	1.14	2.0^{\ddagger}	VRi'z'	ACS (6') XMM
	RX J0848.9+4452	$08 \ 48 \ 46.9$	+44 56 22	1.26	2.8	BVRi'z'	ACS (6'), XMM, Chandra
z~1.4	(XMMU2235.3-2557)	22 35 20	.6 -25 57 42.0	1.393	3.0	VRi'z'	XMM
	XMMJ2215.9-1738	22 15 58.5	-17 38 02.5	1.45	4.4	VRi'z',NB	XMM

Kodama et al. (2005)

遠方宇宙の大規模構造

Spatial distribution of phot-z members ($\Delta z = -0.05 \sim +0.03$)

Kodama et al. (2005)

銀河団周辺部で銀河の性質が変化?

med = outskirts / group / filament

(銀河密度)

赤い銀河が銀河団周辺の中間的な密度環境で増え始めている。 銀河群・フィラメント環境で銀河の星形成が止まる!?

次のステップ:各銀河の物理量を正確に求める

H α mapping of CL0024 Cluster (z=0.4)

Suprime-Cam + BRz' and NB912 (FWHM=134Å=4000km/s)

Kodama et al. (2004)

星形成銀河の選択 (広視野NBサーベイの利点)

(Kodama et al. 2004)

Phot-z の限界を超えて、星形成銀河をコンプリートに選び出せる。 TAO ならほぼ redshift の切れ目なく z>2 までHa輝線サーベイを行える。

ダストに埋もれた活動性を見逃さない工夫

$H\alpha + MIR mapping of RXJ1716 cluster (z=0.8)$ すばる S-Cam (V, R, i', z') MOIRCS (J, NB119) あかり IRC (3, 7, 15 μ m)

ダストに埋もれた活動性を見逃さない工夫

Hα+MIR mapping of RXJ1716 cluster (z=0.8) ダスティー銀河の存在も無視できない。SPICAとのコラボレーション

広視野 AO の魅力

Image: Subaru optical / Contour: AKARI MIR

中間赤外で輝くような銀河はすべて合体/相互作用銀河なのか? z~1の銀河群レベルまで詳細に銀河の形態調査がしたい

z~1.5 銀河団における星形成活動

XCS2215 (X線最遠方銀河団, z=1.46)の[OII] 輝線サーベイ。 [OII] 輝線銀河が銀河団の中心近くにも多く存在

z~1-2 は銀河団形成の重要な時期か?

H α emitters at z=0.81 (RXJ1716) [OII] emitters at z=1.46 (XCS2215) Δ R.A. [Mpc (physical)] Δ R.A. [Mpc (physical)] 0.40.2 -0.2-0.40.40.2-0.2-0.40.40.4[Mpc (physical)] 0.50.5[Mpc (physical)] Dec. [arcmin] 0.2Dec. [arcmin] 0 0 0.20 D2.0 Dec. < -0.2 -0.5-0.5<1 0.4 $H\alpha$ emitter 🗆 [OII] emitter -0.40.5 0.5-0.50 -0.5Δ R.A. [aremin] ∆ R.A. [arcmin]

Koyama et al. (2009)

Hayashi et al. (2009)

Propagation of SF site? (cluster core at z=1.5 → outskirts at z=0.8) z > 1 銀河団も Ha輝線での調査が必須。

まとめ: TAOへの期待 (z<2の銀河団研究)

- •Ha輝線に基づく 0.5 < z < 2.0 の大規模構造に沿った銀河団・銀河群の星形成活動探査をしたい。
- ・NBで銀河団とその周辺のHa輝線銀河を一網打尽にする。チューナブルフィルターがあれば断然パワフル。
- ・隠された星形成活動を見落とさない対策 > SPICA 連携
- ・広視野AOの威力を存分に使って形態の進化を見たい。

TAO近赤外線装置ワークショップ (IoA, Univ of Tokyo, 11/09/2009)

TAO近赤外装置による原始銀河団研究

Tadayuki Kodama (NAOJ), Yusei Koyama (U.Tokyo), Masao Hayashi (U.Tokyo), Kenichi Tadaki (U.Tokyo), Ichi Tanaka (Subaru), et al.

Origin of Environmental Dependence

group

N-body simulation of a massive cluster

z = 5

z = 30

Ζ

(Yahagi+05)

★Optical Survey with S-Cam (0.4<z<1.5): Kodama+, Tanaka+, Koyama+ Hayashi+, PISCES team

★NIR survey with MOIRCS (1.5<z<5.2): Kodama+ Kajisawa+, HzRG team (Subaru+ESO)

field galax

 $M=6 \times 10^{14} M_{\odot} 20 \times 20 M \text{[pc}^2 \text{ (co-moving)]}$

becomes more important at high-z.

Nurture? (external)

Need to go outer infall regions to see directly what's happening there.

Star forming activity in the cluster cores

 \Box H α emitters at z=0.81 (RXJ1716)

[OII] emitters at z=1.46 (XCS2215)

Koyama, TK, et al. (2009)

Hayashi, TK, et al. (2009)

Inside-out propagation of star forming activity in cluster cores !?

中心から外側へ星形成活動・減衰が移行する?

Galaxy formation bias & External environmental effects (mergers?)

Hα @ z=0.4

Hα @ z=0.8

[OII] @ z=1.5

より遠方の原始銀河団で、星形成中の活動的銀河と星形成を終えた受動的銀河 の両方をとらえて、それら空間分布の比較とその進化を調べることが重要!

High redshift(z) Radio Galaxies [HzRG] with Subaru, VLT, and Spitzer

7 confirmed proto-clusters at 2 < z < 5.2 associated to radio galaxies

Overdense regions in Lyman- α emitters by a factor of 3—5.

Name redshift NIR Spitzer Lya spectra others

PKS 1138-262	2.16	JHKs 3.68.0	16	NIR/Opt	Ha, VLA, Chandra, SCUBA
4C 23.56	2.48	JHKs 3.68.0		NIR	На
USS 1558-003	2.53	JHKs 3.68.0			
USS 0943-242	2.92	JHKs 3.624.0	29	Opt	
MRC 0316-257	3.13	JHKs 3.68.0	32	NIR	
TNJ 1338-1942	4.11	JHKs 3.68.0	37		Suprime-Cam, VLA, MAMBO
TNJ 0924-2201	5.19	JHKs 3.624.0	6		Suprime-Cam/ACS (LBGs)

using MOIRCS/Subaru and Hawk-I/VLT

Kodama et al. (2007), De Breuck et al. (Spitzer HzRGs)

今後VISTAサーベイによって、大量の原始銀河団候補(100-1000)が見つかってくる。 すばるでもそう簡単でない深さ(J~24,H~23,K~22)で、系統的な観測はなかなか大変。

Structures in proto-clusters

Spatial distribution of NIR-selected member candidates and emitters Kodama, et al. (2007)

"Red Sequence" of galaxies

Emergence of the red-sequence at z~2 in proto-clusters?

z~2 (PKS1138)

z~3 (USS0943)

The red sequence seems to be emerging between z=3 and 2 (2 < Tuniv[Gyr] < 3).

Spectroscopic follow-up "still" in progress...

Incredibly unlucky with weather so far! (10 out of 13 Subaru nights were clouded out !) Nevertheless...

Subaru/MOIRCS (NIR, ~30 slits over 7'×4', R=1300, 5 hrs)

3 H α emitters (members) are detected around 4C23.56 (z=2.483) 2 H α emitters (members) are detected around PKS1138 (z=2.156)

> Subaru/FOCAS (optical, ~30 slits over 6'φ, R=1000, 5 hrs)

6 redshifts (Ly α +) are measured for USS0943 (z=2.923), of which 2 are members (LAE, b-JHK), while the others are still within 2.4<z<3.1, consistent with our b-JHK selection.

VLT/FORS2 (optical, ~30 slits over 7'×7', R=1000, 5 hrs)

11 redshifts (Lya+) are measured for USS0943 (z=2.923), of which 2 are members, while 4 out of 9 others are still within 2.4<z<3.1, consistent with our JHK selection.

We don't see many strong emissions... Need to search for continuum break and/or absorption lines.

Ultra-Deep Continuum Spectrum of a DRG

Continuum (Balmer/4000Åbreak) redshifts for DRG Kriek et al. (2008)

MUSYC survey, K<19.7 GNIRS on Gemini-S, R=1000, 2-3hrs each R=1000のデータをR=40-50になまらしてSEDを得、ブレイクの位置からzを決める。 遠方(z>1.5)の赤い銀河のzを決めるのに有効な方法。⊿z/(1+z) < 0.019 (~6000km/s)

NEWFIRM Medium-Band Survey (Kitt Peak 4m, 27.6' × 27.6')

van Dokkum et al. (2009), arXiv:0901.0551

Fig. 1.— Medium-bandwidth filters designed for NEWFIRM and used in the NMBS. The throughput of the filters ranges from \approx 70 % for J_1 to \approx 90 % for H_2 (excluding effects of the atmosphere). The top panel shows the atmospheric transmission spectrum, for two different water columns: the broken line is for a column of 1.6 mm and the solid line is for 3.0 mm.

Medium-band redshifts

Fig. 2.— Spectral energy distributions from $0.3 - 2.4 \,\mu\text{m}$ of the four galaxies in the SDSS 1030 Kriek et al. (2008) sans the highest S/N ratio. Black points are broad band photometric data, blue points are the new medium band data. The med data are able to pinpoint the location of rest-frame optical breaks in the spectra. Dark grey spectra are the best-fit EAZ SEDs. Light grey points are binned near-IR spectra obtained with GNIRS on Gemini, from Kriek et al. The best-fit model the (independent!) GNIRS spectra very well.

van Dokkum et al. (2009), arXiv:0901.0551

Fig. 3.— Comparison of photometric redshifts derived from medium band photometry to spectroscopic redshifts measured with the GNIRS near-IR spectrograph on Gemini for the four galaxies shown in Fig. 2 (solid symbols). There is very good agreement, with scatter 0.01-0.02 in $\Delta z/(1+z)$. Open symbols show the remaining 10 objects from the Kriek et al. (2008) sample. The scatter is small even for these galaxies, even though the S/N of their medium band photometry is lower than our survey criterion.

SED fitting $\chi^{e}_{min} = 0.8$ $1.00 \neq \chi^{*}_{min} = 2.8$ CDFS-695 age(Gyr) +0.10 z_{spec}=2.225 z_{spec}=2.225 =2.225 =2.225 0.01 $\chi^{*}_{min} = 1.3$ $\chi^{*}_{min} = 1.6$ 5 age(Gyr) 1.00 MS1054 z_{spec}=2.423 z_{spec}=2.423 z_{spec}=2.423 z_{spec}=2.423 $\chi^{e}_{min} = 0.5$ 1.00 age(Gyr) ß HDFS-0.10 0.01 1.00 0.01 10.000.0 0.5 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 2.0 3.0 0.10 1.0 4.0 1.0 10.0 M_{\star} (10¹¹ M_{o}) $\tau(Gyr)$ log SFR A. z

Balmer/4000ÅブレイクやMg2フィーチャーの強さから星の平均年齢が推定できる。

Kriek et al. (2006)

K-band spectra with Subaru/MOIRCS (4.7 hours, R=1300, 4'x7')

4 H α emitters including the RG.

I. Tanaka et al., in preparation

TAO Window (0.85 < $\lambda [\mu m]$ < 2.4)

0.4<z<4 銀河の星形成史/重元素量/力学質量とその環境依存性 8' = 8Mpc (z=1), 10Mpc (z=1.5), 12Mpc (z=2), 14Mpc (z=2.5)

Science with Line Emitters

*3-D large scale structures with spec-z * Environmental dependence of SFH Star formation rate (Hα, [OII] emission lines) **Dust extinction** (H α /H β) Gas metallicity (R23, O32, [NII]/Hα) AGN separation ([OIII]/H β vs. [NII]/H α) **Dynamical mass** (line width) **Post-starburst** (composite Balmer absorption)

"When and Where do we see (post-)starbursts and truncation?" "How much star formation is hidden in the optical (rest-UV) surveys?"

Hα Mapping of CL0024 Cluster (z=0.4)

9050

9100

9150

9250

Suprime-Cam + BRz' and NB912 (FWHM=134Å=4000km/s)

Kodama, et al. (2004)

NB輝線銀河探査の重要性

広・中帯域撮像(passive galaxies)と狭帯域撮像(active galaxies)を組 み合わせることによって、あるredshift(銀河団)にある赤く古い銀河と青 い星形成銀河の両方をカバーした優れたサンプルを得ることができる!

Narrow-band emitter surveys (Hα, Hβ, [OII]) with Suprime-Cam/MOIRCS on Subaru

Targets	Redshift	t Filter	Instr.	CW	FWHM	Line	SFR	Status
	(Z)			(µm)	(µm)	(N	1/yr, 5	σ)
(Clusters: PISCES	S)							
CL0024+1652	0.395	NB912	S-Cam	0.9139	0.0134	Ηα	0.1	Kodama+04
CL0939+4713	0.407	NB921	S-Cam	0.9196	0.0132	Ηα	0.1	Nakata+
RXJ1716.4+6708	0.813	NB119	MCS	1.1885	0.0141	Ηα	1.7	Koyama+09
		NA671	S-Cam	0.6714	0.0130	[OII]		Koyama+09
XCS2215.9-1738	1.457	NB912	S-Cam	0.9139	0.0134	[OII]	4.3	Hayashi+09
(Proto-clusters: HzRG)								
Q1126+101	1.517	NB1657	MCS	1.657	0.020	Ηα		planned
Q0835+580	1.536	NB1657	MCS	1.657	0.020	Ηα		planned
PKS 1138-262	2.156	NB2071	MCS	2.069	0.027	Ηα	5.4	proposed
4C 23.56	2.483	CO	MCS	2.288	0.023	Ηα		I.Tanaka+09
USS 1558-003	2.527	NB2315	MCS	2.313	0.027	Ηα	12.4	proposed
(Blank fields)								
GOODS-N	2.19	NB209	MCS	2.091	0.027	Ηα	10	Tadaki+09
		NB155	MCS	1.545	0.017	Ηβ		Tadaki+09
		NB119	MCS	1.189	0.014	[OII]	10	Tadaki+09
SXDF/UDS	2.19	NB209/NB155/NB119 MCS					planned	

MOIRCSのペアNB撮像によるz=2.2輝線銀河の探査 (一般フィールド領域:GOODS-N, SXDF...)

[OII] と Hα とを両方捉えることができる。したがってredshiftが決まる。

z=2.2 Hα輝線銀河 in GOODS-N

ALMAとの連携観測(近赤外~電波)

TAO/Subaru (Near infrared)

• L(NIR)+SED

- → Stellar Mass (M_{star})
- H α /H β /[OII] survey \rightarrow HII region (SFR)

ALMA (Submm--Radio)

- Submm conti. (850 μ m) \rightarrow Dust (SFR)
- CO(3 \rightarrow 2) (~100GHz@z~2) \rightarrow Mol. Gas (M_{gas})

a =
$$\frac{M_{star}}{M_{gas}}$$
 : ガス消費率
b = $\frac{SFR}{M_{star}}$: 星形成タイムスケール

TAO-NIRによる原始銀河団(およびフィールド)の研究 銀河形成・進化のピーク期(1.5<z<3)の系環境を網羅した系統的探査

> 2~3バンド同時撮像&広視野&小バンドギャップ&長時間投入 などの特長を活かして、ユニークな深撮像サーベイを! GLAOが効けば尚よい(銀河間相互作用を分離できる)!

- Medium-band break survey (J1,J2,J3,H1,H2,K1,K2)
 赤い受動的銀河のメンバー同定とSED年齢 (D4000/Balmer break)
- Narrow-band emitter survey (10~100 filters or TFs) 青い活動的銀河の星形成率と重元素量、AGN (Hα、Hβ、[OII]、[OIII]、[NII])

分光サーベイでは事前ターゲット選択によるバイアスがかかるのに対し、 撮像サーベイでは"コンプリートサンプル"を構築できる(但し分光確認も必要)。

QSO Studies with TAO

2009.9.11 TAO/NIRCAM workshop

Tohru Nagao (Ehime U.)

The AGN study in the TAO era

(1) The Evolution of Supermassive Black Holes (SMBHs)
 1a) Search for QSOs at z>6.5

1b) QSO Luminosity Func. / SMBH Mass Func.

(2) The Co-Evolution of SMBHs and Galaxies
 2a) QSO Host Galaxy Mass

26) Chemical Properties (cf. next talk)

1a) Highest-z QSOs: SDSS View (1999-2006)

J1148+5251 z=6.42 J1030+0524 z=6.28	
J1030+0524 z=6.28	
J1030+0524 z=6.28	
	<u> </u>
J1623+3112 z=6.22	N YM
J1048+4637 z=6.20	Jun was a second s
J1250+3130 z=6.13	
J1602+4228 z=6.07	Man and a second
J1630+4012 z=6.05	Manual and a second second
J1137+3549 z=6.01	Martin Markin
J0818+1722 z=6.00	Marine Ma
01000+0000 Z=0.99	Martin Ma
J1335+3533 z=5.95	principation where a second
J1411+1217 z=5.93	M
J0840+5624 z=5.85	Morris Mary reduced and a reduced and and
J0005-0006 z=5.85	
J1436+5007 z=5.83	Mannahmon et language wert laser all a
J0836+0054 z=5.82	
J0002+2550 z=5.80	
J0927+2001 z=5.79	Manufally and a start and a
J1044-0125 z=5.74	M. M. Marrie Mar
7000 7500 8000	8500 9000 9500 λ (Å)

2 dozens of QSOs at 5.7<z<6.5 ~ cosmic reionization ~ rapid growth of SMBHs ~ early metal enrichment ~ z>6.5 QSOs definitely needed

Maximum redshift: 6.5 ~ limit of "i-drop" selection ~ "z-drop" QSOs ?? ~ requires "wide" Y & NIR data

Fan et al. (2006)

1a) Highest-z QSOs: SWANS View (2012-2016)

SWANS = Subaru Wide-Field AGN Survey

~ using Subaru/HSC (2011-) ~ 2000 sq.deg. ("HSC-wide") ~ 5 band (g, r, i, z, Y) imaging ~ JHK available data (UKIDSS) ~ observations: 2012-2016 (?)

Search for QSOs at z>6.5

~ "z-drop" for QSOs at z~7 ~ 10-100 QSOs at z~7 expected ~ "Y-drop" for QSOs at z~8 ~ a few QSOs at z~8 expected ~ cool dwarfs are contaminated ~ spectroscopic follow-up needed

1a) Highest-z QSOs: TAO View (201x-)

Follow-Up Spectroscopy for High-z QSO Candidates

~ success rate: ~3% (300 targets for 10 true QSOs) ~ optical (incl. WFMOS): useless for QSOs at z>7 (Lya at >1micron) ~ FMOS: useless for rare objects (<1 targets for FMOS FoV) ~ 4m telescopes: useless for faint objects (J=20) ~ TAO: ~2 hours ok(?), 60/5 nights/yr for 300 targets (??) ~ requiring sensitivity down to 9000A for QSOs at z~6.5

Moderately Large Aperture Size of TAO Project-Oriented Operation of TAO YJHK coverage of NIRCAM (especially Y)

Identifications of QSOs at z>7 with TAO !!

in the TAO era SWANS (2012-) avoiution of Supermassive Black Holes (SMBHs) 1a Search for QSOs at z>6.5 b) QSO Luminosity Func. SMBH Mass Func. (2) The Co-Evolution of SMBHs and Galaxies 2a) QSO Host Galaxy Mass 26 Chemical Properties (cf. next talk) Requests to TAO/NIRCAM ~ variable slit width ~ spectral coverage down to ~8200A ~ project-oriented operation

Fell/Mgllから探る宇宙化学進化

天文センターD1 鮫島 寛明

川良公明,吉井譲,大藪進喜,松岡良樹 浅見奈緒子,家中信幸,清水孝則,続唯美彦

これまでに行われた観測

- 観測天体は明るく、輝線の豊富なクェーサー
- Fell/Mgll輝線強度比がFe/Mgアバンダンス比を反映していると仮定

Redshift	Number	Paper
0 < z < 1	44	Tsuzuki+2006 Iwamuro+2002
1 < z < 2	~10,000 (SDSS)	M.thesis of Sameshima Iwamuro+2002
2 < z < 3	6	Sameshima+2009
3 < z < 4	19	Dietrich+2003 Thompson+1999
4 < z < 5	31	lwamuro+2002 Maiolino+2003
5 < z < 6	13	Kurk+2007 Jiang+2007 Freudling+2003
6 < z < 7	10	Iwamuro+2004 Barth+2003

Fell/Mgll輝線強度比の観測結果(1)

Fell/Mgll輝線強度比の観測結果 (2)

- 現在のところの解釈
 - z < 6では明らかなブレイクは見られない
 - z~6でもFeは理論の予測より大量に存在 (Pop.IIIがFeを大量に作っている?)

でもその前にいろいろと問題が…

- Fell/MgllはFe/Mgアバンダンス比を正しく反映しているのか?
 - micro-turbulence依存性 (Verner+2003)
 - エディントン比依存性 (Dong+2009)
 - → Fell/Mgll輝線強度比の非アバンダンス要素への依存性を調べる必要
- High-z天体の値が散らばっている
 - 測定方法がバラバラ (Fellテンプレートの違い etc.)

→ 単一の望遠鏡を用い、同じ方法で測定することが望ましい

- SDSSクェーサーの解析
 - Fell/Mgll FWHM(Mgll)

• Equivalent Widthの振る舞い

アバンダンス測定の試み

- EW分布のモデル
 - 各輝線は半値幅の値によって系統的に変化

→ 金属量に依存しない水素の輝線(HB)の分布がこれを反映

- MgllやFellの分布は「半値幅による系統的な変化」+「アバンダンス分布」を反映
- x = log EW, v=FWHM, F(x ; v): EW分布, G(x ; v): アバンダンス として、

$$F_{FeII}(x;v) = \int G_{FeII}(x-x';v)F_{H\beta}(x';v)dx'$$

FWHM > 3000km/s のサンプル

星形成時期の広がりを反映したモデル

.....

Fell/Mgll研究で必要とされていること

- 1. 赤外観測によるHigh-z天体のFell/Mgll測定
- 2. サンプル数の増加
- 3. 測定装置、手法などによる測定結果の散らばりを抑える

• TAOの出番

- 専用望遠鏡ならではの豊富な観測時間
- 世界最高の赤外線感度
- 0.85-2.5µmの広い観測波長域
- マイクロシャッターアレイによる多天体分光観測

TAOでもたらされるデータ

- ねらうことのできる赤方偏移の範囲
 - TAOの観測波長域…0.85-2.4µm
 - Fell/Mgll測定に必要な静止波長域 … 2,000 3,500 Å

→ 3.3 < z < 5.9 にある天体のFell/Mgll分布が測定可能

- Fe/Mgアバンダンス測定法の考案
 - Fell/Mgllの非アバンダンス要素(FWHM)依存性を補正することで、アバンダンスの測定ができる
- 星形成時期の広がりを考慮したモデルの作成
 - high-zにおけるFe/Mgのdispersionはintrinsic
 - 理論的な分布と観測値の分布の比較を比較することで、宇宙論パラメータや
 第一世代星形成時期に制限をかけられる
- 必要とされる観測
 - とにかく多くのサンプルを取得
 - High-zデータ取得のための近赤外線観測
 - TAOはこれらの条件を全て満たしており、現代天文学が抱える大きな難問であるFe/Mg問題に解決をもたらしてくれるだろう

TAO WS – 2009.9.11 – Keiichi Maeda

Time scale ~ days to yrs

– phenomenological estimate of M_{abs} , then $\sigma \sim 0.2$ mag.

SN Ia Cosmology @ NIR

- Optical.
 - phenomenological estimate of M_{abs} , then $\sigma \sim 0.2$ mag.
- NIR.
 - **Better standard candles**, $\sigma \sim 0.2 \text{ mag w/o any correction.}$ - Dust free.

- Proposal:
 - Cluster Patrol in J and/or H by TAO.
 - 8' FOV => 1.5Mpc @ z = 0.2, ~ R_{Abell}.
 - 100 galaxies /cluster => 1 SNe Ia /year/cluster (underestimate?).
 - 3 cluster x 1 hr x 2 time/week => ~ 10 SNe Ia/3 year survey.
 - Better strategy will increase the discovery rate.
- Why TAO?
 - Need intensive coverage, < ~ 5 days.
 - J + H simultaneous imaging for K-cor.

- Does it make sense?
 - @z ~ 0.2, Ω_Λ is already visible.
 - "a small sample, better precision" is better than "a large sample, worse precision"?

SN Ia Cosmology @ NIR

- Complementary Scenarios.
 - Mini-TAO and/or MAGNUM.
 - SN survey (replacing the "patrol" strategy).
 - NIR light curves of nearby SNe Ia (still need test).

– Subaru/FOCAS (ToO).

• SN identification.

– JWST.

• NIR Spectroscopy of nearby SNe Ia (K-cor.).

Byproduct: Higher-z SN?

- Monthly deep survey MAY catch a few SNe @ z ~ 1 – 2, by gravitational lensing.
 - Complementary w/ the cluster patrol.
 - Useful for rate study?

Stanishev+ 09; Goobar+ 09

- Cosmology (SNe Ia + time delay) is not promising (?).

Obscured SNe Search

• SN search has been conducted in optical.

- SNuB = SNe / 100yr / 10¹⁰ (L_B/Lsun).

- A large fraction of SF = dusty starburst galaxies.
 - SNe in LIRGs (+ULIRGs) are HIDDEN.
 - L_{B} in these galaxies is NOT a good measure.
- Cosmic SN rate is then highly model dependent.
- Importance of **DIRECT SN detections** in dusty galaxies.
 - Go to NIR. SNuJ, SNuH, SNuK.
 - Core-Collapse, SNe II (Ib/c is more difficult).

Obscured SNe Search

- A lesson from the past study (Grossan+ 99).
 - Even in NIR, a large fraction of SNe are likely missed.
 - Why? Host galaxy nucleous.

• AO... VLT just started. One detection. Continue?

• $M_J \sim -18$, $A_J \sim 3 \rightarrow J = 20 - 21$ @ z = 0.03. $\rightarrow 10$ min?

• Proposal.

- LIRGs AO patrol at z < 0.03.
 - $L_{FIR} \sim 10^{10-11}$ Lsun, 10 (?) SNuFIR => ~ 0.1 1 SN /yr/gal.
 - 30 galaxies x 10 min/month => ~ 3 30 SNe II/1 year survey.
- Exposure time should be optimized.

• Why TAO?

- NIR AO. Patrol observations (hard w/ 8m at least now).

TAO WS – 2009.9.11 – Keiichi Maeda

Direct Progenitor Search in NIR

- Pre-SN image vs. post-SN image.
- Intensively done by HST. VLT/NIR/AO started.

SN IIP 2005cs (Maund+ 05), HST

Direct Progenitor Search in NIR

- Testing stellar evolution and explosion theories.
- Complementary w/ e.g., light curve modeling.

Direct Progenitor Search in NIR

- NIR, a possible new window for a class of SNe.
- SN 2008S.
 - Progenitor NOT detected in optical.
 - IR detection (3-4µm), Spitzer.
 - ~ 6 8Msun, hidden by dusty CSM.
- ONeMg core-collapse?
 - Theoretically expected (8-10Msun)
 - Potentially abundant (faint).

—20 0 20 40 X (arcsecs)

-40 -20 0 20 40 X (arcsecs)

TAO WS – 2009.9.11 – Keiichi Maeda

- AO imaging of nearby large galaxies (anyway should be done!).
 - Two AO images @ a few weeks / a few yrs AFTER SN (disappear?).
- Why TAO?
 - AO/NIR (but can be done by others....). Optical search maybe biased.
 - Potentially large sample coverage (vs. JWEB, 8-m).

NIR Nearby SN Followup

- SNe Ia @ early phases (< 3 months).
- SN Search by MiniTaO/MAGNUM?
- M_J = -16, *J* = 19 20 @ *z* ~ 0.03.
 - J, H Light Curves ("standard" candle).
 - ~15 SNe la
 - ~ 7 w/ good temporal coverage.
 - NIR Spectra.
 - ~ 35 SNe Ia, mostly single epoch.
- Outer layers
 - Compositions \rightarrow progenitors.
- Template for Cosmology.

NIR Nearby SN Followup

- SNe Ia @ late phases (> 3 months).
- SN 2003hv@20 Mpc... J ~ 18/19/20 @ 100/200/300 days.
 - J, H Light Curves.
 - Only a few published, no good temporal coverage (1 in 100 days).
 - NIR Spectra... "semester" proposal is a problem (e.g., Subaru).
 - Motohara, Maeda+ 06: 3 SNe Ia @ 200 400days (single epoch).
 - J_{lim}@4hr, S/N = 10 ...19 mag w/o AO, 20.5 mag w/AO.
- A large fraction emitted in NIR (thermal structure in SNe).
- e+ contribution. Escape fraction => B-filed, e+ in the Galaxy.
- ⁵⁷Co.
- Dust (core-collapse SNe).
- Explosion Geometry.

NIR Nearby SN Followup

• Explosion Geometry (example of science cases).

Recent models...

NIR can probe it!

Asymmetric.

Specific Axis?

Kasen, Roepke, Woosley 09, Nature

Maeda, Roepke + 09, ApJ, submitted

Maeda, Taubenberger+ 09, ApJ, submitted

Summary

• Proposed scenarios.

- SN Ia cosmology \rightarrow Hubble diagram @ z ~ 0.2.
 - 6 hr / week x 3 yrs: 10 SNe Ia w/ good luminosity estimate.
- SN II in dusty gals. \rightarrow "True" SN rate.
 - 5 hr / month x 1 yr: 3 30 SNe II.

Best for TAO?

- Progenitor Search \rightarrow NIR likely a new window.
 - Post-SN images taken by, e.g., AO-NIR nearby gal. servey.
 - Another two post-SN images. "Cheap". Best for TAO?
- − Nearby SNe followup → Good dataset. Cosmology.
 - Sampling nearby SNe. MiniTAO, MAGNUM?

NIR Variability Survey for AGN and SNe

TAO/NIRCAM

TAO/NIRCAMの特長 1. 広視野: 9.6'φ 2.2バンド同時撮像 - 効率up Supernovae - 短時間変動天体のSED 3. 多天体スリット分光 AGN 4. 柔軟性の高い観測 - モニタリング - 悪天候のcompensation - ToO

(high-z) 超新星サーベイ

超新星サーベイのこれまでの常識(?)

- SN Iaはz~1.5くらいまでは観測可能。
- core-collapse (CC) SNは、一般的には、SN Iaより暗い。
- CC SN rateはz~1に到達するのがギリギリ。

超新星サーベイのこれまでの常識(?)

- SN Iaはz~1.5くらいまでは観測可能。
- core-collapse (CC) SNは、一般的には、SN Iaより暗い。
- CC SN rateはz~1に到達するのがギリギリ。

超新星サーベイの最近の常識(?)

- SN Iaはz~1.5くらいまでは観測可能。
- core-collapse (CC) SNは、一般的には、SN Iaより暗い。
- が、SN IInは明るいのでhigh-zでも観測可能。
- 重力レンズ効果による増光を有効利用。
- CC SNはz>2でも観測可能。CC SN rateから星形成史、IMFへ。
- hostless (or diffuse host) SNは変なのが多い?

High-z SN Ia cosmology/rate Totani, TM+2008

Type Ia Supernova (較正可能な標準光源) • 2つのpopulation???

> - tardy (delayed): 星形成後、しばらく時間が たった後(>1 Gyr)、爆発。

- prompt: 星形成後、すぐに爆発(<1 Gry)
- 2種類のprogenitor system???
 - single degenerate (SD)
 - double degenerate (DD)
- dust減光の不定性 + intrinsic color

← 縮退。補正が難しい。 (intrinsic scatterはrest-frame U-bandで顕著)

Statisticsは十分。Systematicsが問題。

Rest-frame red-optical/NIRへ: prompt populationも見つけやすい? rest-frame I-band: Freedman+2009 (z<0.7) rest-frame H-band: Wood-Vasey+2009 (nearby) Dust-free環境: 楕円銀河に特化してサーベイ

High-z SN Ia cosmology/rate

- dust-free cosmology
- optical (Suprime-Cam/HSC)のNIR follow-up (J-band) - z>1
 - z~0.5: opticalでのextinction calibration rest-frame B,V
- dust-free SN rate
- uncertain missing fractions in optical
 Ia/CC SN survey in nearby/low-z galaxies?

Barbary+2009

(high-z) SN rate

<u>銀河観測とは独立なSFHの研究</u>

- 銀河の明るさに依存しない。
- Iaでもz~1.5。CCはがんばってもz~1。 もどかしい。

"変な"超新星が結構見つかってきている。

- SN 2006gy (NGC1260)
- SCP06F6

- SN 2001gl 母銀河がないor 暗いものが多い。 Intergalactic???

Wavelength (Å)

Gravitational Telescope

「銀河団により重カレンズされた超新星を探す!!!」

Stanishev et al. 2009, A&A, in press (arXiv:0908.4176) *"Near-IR search for lensed supernovae behind galaxy clusters: I. Observations and transient detection efficiency"*

Goobar et al. 2008, A&A, in press (arXiv:0810.4932) *"Near-IR Search for Lensed Supernovae Behind Galaxy Clusters -II. First Detection and Future Prospects"*

Gravitational Telescope ~ NIR survey for z>2 SNe ~

SN IIP at z=0.59を発見 (1つ) w/ VLT/ISSAC (2.5'x2.5')

A1689 (z=0.183) magnification map

w/ VLT/HAWK-I (7.5'x7.5')

HAWK-I -- 5 years -- A1689

Gravitational Telescope ~ NIR survey for z>2 SNe ~

SN IIn at z>2

SN IIn(t

- 非常に明るい(MB~-19mag)

- blue spectrum なのでz>2でも受かる。(Cooke 2008)

Supernova Legacy Survey (SNLS)の データ(CFHT/MegaCam)を使ってz>2の SN IInを2つ見つけた。(Cooke+2009)

z~2だとJバンドはrest-frame U,B 視野の観点からはopticalの方がベター?

High-z Supernovae Survey

AGN monitoring

- NIR variability survey for AGN
- Supermassive black hole (SMBH) binary
- quasar母銀河

NIR variability survey for AGN 低光度ほど変光大 in UV/optical (Vanden Berk+2004など) → 低光度ほど変光大 in NIR???

type-2 AGNのdustトーラスの変光。 タイムスケールはopticalと比べて長い:数年、redshiftするともっと長い。 母銀河のコンタミのせいで、変光大のものしか受からない。

SMBH binary merging

銀河はmerging。ブラックホールもmerging。 タイムスケールは? 頻度は?

最近、SDSS J1536+0441 (あくまでまだ候補)など、 SMBH binaryは結構ホットなトピック?

electromagnetic counterparts of gravitational waves detected by *LISA* (2018-2020打ち上げ, angular resolution~0.1 deg) - mergerの2-3週間前からモニター - orbital motionのタイムスケールで変動 - mergerの時期はdusty AGN? NIRがベター? - もっと広視野が必要? 他のBy-product? - 20 sources/35 weeks/deg2 (Haiman+2009)

quasar母銀河 at z~3-4

flux-flux diagram AGN成分は直線に乗る

→ AGNのカラーは変動により不変 (MAGNUMデータ、坂田修論)

Rest-frame UVの母銀河成分をゼロ と思えば、rest-frame UV/U/B,Vの3 バンド測光モニターで母銀河成分の 推定が可能。 ※可視(0.6um, 2-4mで十分)も必要。

→rest-frame B/Vならz=4/3まで MBH-Mbulge関係から、SMBH進化 に制限をつけるにはやや精度が足り ない? (systematicsさえなければ統 計を稼げばOK?)

まとめ

<u>超新星</u>

- SN Ia cosmology/rateはsystematic errorを抑える時代に。
- ~8000A—Jバンド(w/ AO)での測光/分光
- dust-free SN cosmology/rate
- z>2でもCC SNから星形成史を探れる。
- 悪天候のcompensationを含めて、融通のきく allocation/ToOを

<u>AGN</u>

- Dustyな低光度AGN? AGNの初期phase?
- SMBH binary
- モニタリングによるAGN母銀河成分の推定→BH-bulge関係

ALMA時代における TAO近赤外カメラでの サブミリ波銀河観測

~Pre ALMA era and ALMA era~

五十嵐創(Soh Ikarashi) IoA M1

Contents

Pre ALMA era

 AzTEC/ASTEの観測成果
 すばるなどでもできるNIRのサイエンス。

 ALMA era

 ALMAを活かすTAOとの連携

Submm/mm-bright Galaxy (SMG)

SMGs: Dusty Massive Starbursts at the early Universe

- Bright at (sub)millimeter
 - $-\ L_{IR} \stackrel{>}{_\sim} 10^{12\text{--}13} \ L_{sun}$
 - Star Formation Rates (SFRs) ~ 100-1000 M_{sun}/yr
- Dusty → optically very faint
- Massive
 - M_{dyn} ~ 10¹¹ M_{sun}; M_{gas} ~ 10¹⁰⁻¹¹ M_{sun}
- High-redshift
 - $z \sim 1-4 (z_{median} \sim 2.2)$ (Chapman+05)
 - Detectable at z ~ 1-10 because of the negative K-correction

ARP220

Hidden star formation in the early universe Important role in galaxy formation and evolution

Atacama Submillimeter Telescope Experiment: ASTE

- 10 m submm telescope
- alt. 4860m, Atacama desert, Chile
- 350 GHz (0.87 mm) spectroscopy: CATS345+MAC/WHSF
 - beam = 22", single pix
 - low Tsys & OTF
- 270 GHz (1.1 mm) continuum: AzTEC camera
 - 144 pix
 - FOV ~8 arcmin, beam = 28"

Deep and Wide SMGs surveys

2007/2008年にSXDF,ADF-S,SSA22を観測 - SXDF (Ikarashi +, in prep) ■ 面積:900 arcmin^2 RMS:~0.55 mJy ■ Source:約165 (>3.5σ) - SSA22 (Tamura +, in prep) ■ 面積:800 arcmin^2 RMS:~0.65 mJy Source:約130 (>3.5 σ) - ADF-S (Hatsukade +, in prep) ■ 面積: 1000 arcmin^2 RMA:~0.60 mJy Source:約200 (>3.5 σ)

SMGsはOpticalでは非常に暗く分光が難しい。

B-bandで26等 (AB)より暗いのはざら。
 ■ NIRではそれなりに明るい、22等(AB)ぐらいのことが多い。

NIRCAMならば、30 時間程積分すれば分光できる! 10'x10'のMOSなら一度に前後10個?

Target Science of Spectroscopy

Redshift

Spectroscopy
73 radio-identified SMGs
z = 2.2 (median)
z = 1.7 - 2.8 (interquartile) (Chapman+05 ApJ 622, 772)

AGN診断

- NIR領域の複数の輝線(ex. Hα、Hβ、 OIII,NII)を用いた診断

Veilleux + 1987

Fito, 1.— Reddening-corrected [O ui] A5007/Hğ vs. [N I] A5583/TIa intensity ratios. Symbols for types of objects are as shown in keys to this figure and Fig. 2. Pour short-dashed lines are H II region models of Evasian and Dopita (1985) for 7.— 65000 45000, 385000, and 37000 K from the top to bottom respectively. Long-dashed curve represents H II region models of McCall, Rybski, and Shields (1985). Solid curve divides AGNs from H II region-like objects).

ALMA

日、台湾、米、欧の協力
 南米チリ、アタカマ砂漠
 標高5000m

■ 観測波長:30GHz(1cm)~950GH(315µm)
 ■ 分解能:0.1~0.01arcsec @350GHz
 ■ 2012年正式稼動予定

ALMAでもRedshift IDはできるが... ALMAでもCOラインを使ってSMGsのredshiftは 決めることはできる。

64台Fullで使っても 1天体のredshiftを求めるのにおよそ 3[min]x8[tuning] =24 [min]かかる 24[min]x1000個=400[hours] !!

さらにAzTEC/ASTEに続くSMGサーベイに向けて 450µm, 850µm, 1.1mmの3色カメラを作成中!! 例: M_{gas} = 5 x 10¹⁰ M_{sun}

- CO-H₂ conversion factor = 0.8
- velocity width = 500 km/s
- velocity resolution = 50 km/s

CO	z	ν _{obs}	time for 5 σ	detection [min]
		[GHz]	64 antennas	16 antennas
CO(3-2)	2	115	2	30
CO(5-4)	4	115	3	40

z不定性 = ±05

- ・ ALMA バンド幅 = 4 GHz (IF=4-8)
 - 周波数設定を変えて複数回観測する必要がある

со	ν _{rest} [GHz]	z	ν _{obs} 不定性 [GHz]
J=3-2	345	2	40
		3	22
		4	14
J=4-3	461	2	53
		3	29
		4	19

ALMAでは高解像度を活かしたサイ エンスをしたい

実はALMAの売りの高解像度も時間がかかる。

0.1"分解能 @ z=4 (~0.7 kpc)

ν _{obs}	band	expected Tb	time for 5 σ detection [hour]		
[GHz]		[mK]	64 antennas	16 antennas	
230	band 6	46	11	180	
350	band 7	50	7	120	
650	band 9	43	20	350	

0.01"の達成には 70時間!? 複数のラインによるサイエンスを 高分解能で! ・COラインによるtheremalize ・HCNとHCO+を用いたAGN判定 etc

HCN & HCO⁺ Images of Starburst Galaxies

R_{HCN/CO}

an ultra bright SMG, Orochi

 AzTEC/ASTEによる 1.1mm 連続波観測 で見つけた。 Flux: 33.6 mJy @1.1mm ■ S/N~40 カタログ名はAzTEC-ASTE-SXDF1100.001

ALMAの高分解能との連携

 SMGsはdual componentの徴候が 見られることがある。

ALMAで低温ガス領域は0.1"~0.01"の 分解能になる Opt/NIRの高解像度も重要!! NIRCAMのAOに期待!!

SXDF1100.001 (Ikarashi+ in prep)
ALMA Deep Field (ALDF)

■ ALMAのレガシー観測で議論がすすんでいる。

■ 候補サイト(ALMA-JT系外銀河subWG meeting)

- SXDF (Subaru XMM/Newton Deep Field)
- GOODS-S
- etc..
- 日本のASTEのSMGsチームはSXDFを観測したいと考えている。

ALDFのサーベイplanにもよるが、深さを追及した場合 L~10^10 Lo程度のSMGs(?)が見つかるはず。 これらのfollow up にやはり集中的に時間を投入できる ことは魅力的!!

まとめ

SMGサイエンスにおいてALMA時代には高 解像度のサイエンスをしたい!!

ALMAの高解像度を活かすには赤外領域での事前のredshift測定、Opt/NIR領域での高解像度が重要!!

AKARI/SPICAとの連携

TAO**望遠鏡と宇宙望遠鏡でさぐる**dusty universe

宇宙航空研究開発機構 宇宙科学研究本部 和田武彦 wada@ir.isas.jaxa.jp

TAO 望遠鏡への期待

■ 乾燥高地 hight=5600m PWV<0.5mm

● MIR/FIRに微かな窓が開く

■ **大口径**(6.5m)

- Space NIR 6.5m (JWST)
- Space MIR 3.5m (SPICA)
- Space FIR 3.5m (Herschel)

■ 良好なイメージ

- seeing 0.6"
- diffraction 0.9" at 30um
- diffraction 6.4" at 200um

口径3.5mではこんなもん。

角度分解能1"に迫れると、可視光線との対応が可能になり サイエンスが広がる TAO望遠鏡(6.5m)で、MIR/FIR (25-200um)での観測を行えば、 角度分解能で世界を制せる

TAO-NIRCAMへの期待

■ good median seeing (0.6")

less atmospheric absorption at 1-2.5um

が、圧倒的と言えるだろうか...

- ■特色ある装置
- ■特色あるサイエンス
- ■特色ある運用

• Japanese space telescopeを使う事で出し抜けないだろうか?

日本初の本格的赤外線天文衛星

- 口径68.5cmの冷却望遠鏡
- 遠赤外線サーベイ装置(FIS)と近中間赤外線カメラ(IRC)を搭載
- 波長 9-160um 6 bandでの全天サーベイ(Super-IRAS)
 - MIRで100mJy, FIRで 1Jy
- 波長 2-160um 13 bandでの広域deepサーベイ
 - NIRで10uJy, MIRで100uJy, FIRで1mJy
- Iaunch 2006/02/22 by M-V rocket
- cold mission (Phase 1/2)
 - 2006/05/08-2007/08/26
- warm mission (Phase 3)
 - <u>•</u> 2008/06/01-
 - 2, 3, 4umでの撮像と2.5-5umでのR=100分光

全天サーベイソースをTAOでフォローアップ TAOソースをwarm mission NIR分光撮像でフォローアップ

AKARI all sky survey

9um all sky map (Ishihara et al. 2008)

チャネル	波長範囲	ソース総数	ソース総数 b > 30	ソース密度 b > 30
FIR	$60, 90, 140, 160 \mu m$	30 万個	2万個	0.5 個/平方度
MIR	$9,18\mu\mathrm{m}$	85 万個	8万個	2個/平方度

高銀緯では、多天体分光の旨味はない。 銀河面、LMCでは、多天体分光が有効。

AKARI/IRC all sky survey **ソース** R=14 等 K=12.7等 9micron 83mJy 18micron 330mJy

■ K-9umでピックアップ

■ AKARI(warm mission) NIR分光でフォローアップ

■地上可視光線分光観測によるフォローアップ

AKARI MIR surveyソースを地上可視光線分光観測によるフォローアップ

(Oyabu et al. 2009)

TAO follow-up of AKARI deep and wide survey

NEP DEEP, NEP WIDE

■ Wada+08, Lee+08

AKARI DEEP FIELD SOUTH (ADF-S)

Shirahata+08

LMC

Ita+08

TAOによる多天体分光フォローアップ TAOによる高解像度イメージング

Arp220のSEDIJTakagi model(Takagi et.al. 2003)

Imaging (3, 7, 11, 15, 24), and spectroscopy (2-5um, R=30)

Fig. 4.— Example of the NIR spectra taken with the IRC slit-less spectroscopy mode. (a) HII region, (b) dusty carbon star, and (c) young stellar object.

(Onaka et al. 2007; Ita et al. 2008; Shimonishi et al. 2008)

次期赤外線天文衛星

■ 口径3m級の冷却望遠鏡

■遠中間赤外線で驚異的な感度

- 遠赤外線分光撮像装置(SAFARI; 35-200um, 2'x2', R=2000)
- ●中間赤外線カメラ (MIRACLE; 5-38um, 6'x6', R=10-100)
- 中間赤外線分光器 (MIRHES; 10-36um, R=1000)
- •高分散分光器 (MIRHES; 4-8, 12-18um, R=30000)
- コロナグラフ (SCI; 3.5-26um, ダイナミックレンジ10^6)
- 遠赤外線分光装置 (BLISS; 40-400um, R=1000)
- launch 2010年代後半を目標
- 2008-2010 プリプロジェクトフェーズ
- 2011- プロジェクト化を目指して準備中

TAO**ソースを中間赤外線でフォローアップ** SPICA**ソースを高解像度撮像フォローアップ**

SPICA TAOサーベイのフォローアップ

LAE at z>7 の Halphaを測定

- SPICA中間赤外線カメラ(MIRACLE)
- ■吸収の影響の少ない星生成率の測定

■宇宙の電離度の測定

- JWST/MIRIがベスト
- VISTA+JWST/MIRIでやられてしまう?

LAE at z>7の PAHを測定

- SPICA 遠赤外線分光撮像装置(SAFARI)
- ■吸収の影響の少ない星生成率の測定

z=1-3でのPAH emissionの測定

- SPICA中間赤外線カメラ(MIRACLE)
- ■吸収の影響の少ない星生成率の測定

2010年代の宇宙望遠鏡

James Webb Space Telescope(JWST) 2012-

- 0.6-26umの天文台
- ■6m**望遠鏡**
- ■近赤外線で究極の感度
 - NIRcam 2'x2'
 - nJyの世界…

SPICA 2012-

- 5-200umの天文台
- 3.5m 冷却望遠鏡
- ■中間・遠赤外線で究極の感度
 - FIR 2'x2'
 - MIR 6'x6'

(2005年のプレゼンテーションの使いまわしです)

2010年代の光赤外線天文観測

Arp220のSEDはTakagi model.(Takagi et.al. 2003)

■ TAOは、MIRでは高空間分解能観測においてユニーク

■ NIRでは、同業他社あり。なにか特徴が必要。

■特色ある装置

• TAO_NIRCAM

■特色あるサイエンス

●本日いろいろ出ました

■特色ある運用

- ●思い切った戦略的運用
- ・他装置との強調

Subaru/HSC

AKARI catalog

SPICA regacy observations

TAO-NIRCAM WS 総合討論

TAO-NIRCAM Workshop, Sep 11 2009

講演いただいたテーマ

TAO-NIRCAM Workshop, Sep 11 2009

- 波長coverage
 短:0.8 μm ~?
 長:~3 μm?
- 波長分解能
 低:~ 500?
 中:~ 2000?
 高:~ 50000!?
- ・フィルター NB, MB, Tunable
 - 既存装置との住み分け
 - TAOサイトだからこそ出来ること

Facility Keywords

すばる MOIRCS, Ultra-VISTA 多色同時(撮像・分光) 他サーベイからのインプット TAO FLAMINGOS, GLAO,柔軟・豊富な観測時間、 大気透過率 この時までにやられてしまうこと MOS Multiplicity の要求度は? J,H,Kの同時分光の魅力?

- 豊富な観測時間を柔軟に。
- 新たな大気の窓での分光
- ある領域の定期(定常)観測
- Subaru/MOIRCSで出来ないこと
 (観測時間、AO、天体選択(HSC, VISTA))

- 可視チャンネル 遠方銀河、超新星での有用性
- OHS R~5000分散素子で代用? 但し、汎用的過ぎる⇔時間運用の柔軟性。
- 多バンド同時の利点: タイミングが大事な観測(突発・変光天体)。 可視-NIRまで一度に取れると何かと便利。

- 観測時間 使い方を工夫し、すばるとの差別化を。
- TAO/miniTAOの運用 miniTAOを併用したサイエンスの可能性。 同時運用は予算次第。

TAO-NIRCAM Workshop, Sep 11 2009